Hu Meng, Zhuoyue Song, Nsubuga Latifu, Kai Yan, Qinghe Wu, Xiangdong Liu
{"title":"刚性航天器姿态同步的分布式自适应全阶滑模控制","authors":"Hu Meng, Zhuoyue Song, Nsubuga Latifu, Kai Yan, Qinghe Wu, Xiangdong Liu","doi":"10.1109/ICCA.2019.8899553","DOIUrl":null,"url":null,"abstract":"This paper investigates the distributed attitude tracking problem of multiple spacecraft with unknown external disturbances and inertia uncertainties when the time varying reference signal is available to only a subset of group members. Modified Rodriguez parameters are used for attitude representation. The external disturbances and inertia uncertainties are recast into the lumped uncertainties with unknown firstorder derivative upper bound. An adaptive law is proposed to estimate this upper bound. Based on this adaptive law, a distributed adaptive full order sliding mode controller is proposed to achieve attitude synchronization. Simulation results are presented to demonstrate the validity of proposed results.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Adaptive Full Order Sliding Mode Control for Attitude Synchronization of Rigid Spacecraft\",\"authors\":\"Hu Meng, Zhuoyue Song, Nsubuga Latifu, Kai Yan, Qinghe Wu, Xiangdong Liu\",\"doi\":\"10.1109/ICCA.2019.8899553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the distributed attitude tracking problem of multiple spacecraft with unknown external disturbances and inertia uncertainties when the time varying reference signal is available to only a subset of group members. Modified Rodriguez parameters are used for attitude representation. The external disturbances and inertia uncertainties are recast into the lumped uncertainties with unknown firstorder derivative upper bound. An adaptive law is proposed to estimate this upper bound. Based on this adaptive law, a distributed adaptive full order sliding mode controller is proposed to achieve attitude synchronization. Simulation results are presented to demonstrate the validity of proposed results.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Adaptive Full Order Sliding Mode Control for Attitude Synchronization of Rigid Spacecraft
This paper investigates the distributed attitude tracking problem of multiple spacecraft with unknown external disturbances and inertia uncertainties when the time varying reference signal is available to only a subset of group members. Modified Rodriguez parameters are used for attitude representation. The external disturbances and inertia uncertainties are recast into the lumped uncertainties with unknown firstorder derivative upper bound. An adaptive law is proposed to estimate this upper bound. Based on this adaptive law, a distributed adaptive full order sliding mode controller is proposed to achieve attitude synchronization. Simulation results are presented to demonstrate the validity of proposed results.