鲁棒主成分分析与鲁棒子空间跟踪:比较评价

S. Javed, Praneeth Narayanamurthy, T. Bouwmans, Namrata Vaswani
{"title":"鲁棒主成分分析与鲁棒子空间跟踪:比较评价","authors":"S. Javed, Praneeth Narayanamurthy, T. Bouwmans, Namrata Vaswani","doi":"10.1109/SSP.2018.8450718","DOIUrl":null,"url":null,"abstract":"This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Robust PCA and Robust Subspace Tracking: A Comparative Evaluation\",\"authors\":\"S. Javed, Praneeth Narayanamurthy, T. Bouwmans, Namrata Vaswani\",\"doi\":\"10.1109/SSP.2018.8450718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文对依赖于稀疏+低秩矩阵分解公式的鲁棒主成分分析和鲁棒子空间跟踪(动态RPCA)的解决方案进行了理论和实验的比较评价。重点是简单和可证明正确的方法。实验比较显示了视频分层(将给定视频分为前景和背景层视频),这是简化许多视频分析和计算机视觉任务的关键的第一步,例如,视频去噪或活动识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust PCA and Robust Subspace Tracking: A Comparative Evaluation
This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信