S. Javed, Praneeth Narayanamurthy, T. Bouwmans, Namrata Vaswani
{"title":"鲁棒主成分分析与鲁棒子空间跟踪:比较评价","authors":"S. Javed, Praneeth Narayanamurthy, T. Bouwmans, Namrata Vaswani","doi":"10.1109/SSP.2018.8450718","DOIUrl":null,"url":null,"abstract":"This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Robust PCA and Robust Subspace Tracking: A Comparative Evaluation\",\"authors\":\"S. Javed, Praneeth Narayanamurthy, T. Bouwmans, Namrata Vaswani\",\"doi\":\"10.1109/SSP.2018.8450718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust PCA and Robust Subspace Tracking: A Comparative Evaluation
This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.