降低复杂度的盲酉预白化在盲源分离中的应用

S. Vorobyov
{"title":"降低复杂度的盲酉预白化在盲源分离中的应用","authors":"S. Vorobyov","doi":"10.1109/CAMAP.2005.1574214","DOIUrl":null,"url":null,"abstract":"Eigenvalue decomposition (EVD) of the sample data covariance matrix is, typically, used for calculating the whitening matrix and prewhitening the noisy signals. An important problem here is to reduce the computational complexity of the EVD of the complex-valued sample data covariance matrix. In this paper, we show that the complexity of the prewhitening step for complex-valued signals can be reduced approximately by a factor of four when the real-valued EVD is used instead of the complex-valued. Such complexity reduction can be achieved for any axis-symmetric array. For such class of arrays it enables real-time implementation of the prewhitening step for complex-valued signals. The performance of the proposed procedure is shown in application to a blind source separation (BSS) problem","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduced complexity blind unitary prewhitening with application to blind source separation\",\"authors\":\"S. Vorobyov\",\"doi\":\"10.1109/CAMAP.2005.1574214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eigenvalue decomposition (EVD) of the sample data covariance matrix is, typically, used for calculating the whitening matrix and prewhitening the noisy signals. An important problem here is to reduce the computational complexity of the EVD of the complex-valued sample data covariance matrix. In this paper, we show that the complexity of the prewhitening step for complex-valued signals can be reduced approximately by a factor of four when the real-valued EVD is used instead of the complex-valued. Such complexity reduction can be achieved for any axis-symmetric array. For such class of arrays it enables real-time implementation of the prewhitening step for complex-valued signals. The performance of the proposed procedure is shown in application to a blind source separation (BSS) problem\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通常使用样本数据协方差矩阵的特征值分解(EVD)来计算白化矩阵并对噪声信号进行预白化。一个重要的问题是如何降低复值样本数据协方差矩阵EVD的计算复杂度。在本文中,我们证明了当使用实值EVD代替复值EVD时,复值信号的预白化步骤的复杂性可以大约降低四倍。这种复杂性的降低可以实现任何轴对称阵列。对于这类阵列,它可以实时实现复值信号的预白化步骤。应用于盲源分离(BSS)问题表明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced complexity blind unitary prewhitening with application to blind source separation
Eigenvalue decomposition (EVD) of the sample data covariance matrix is, typically, used for calculating the whitening matrix and prewhitening the noisy signals. An important problem here is to reduce the computational complexity of the EVD of the complex-valued sample data covariance matrix. In this paper, we show that the complexity of the prewhitening step for complex-valued signals can be reduced approximately by a factor of four when the real-valued EVD is used instead of the complex-valued. Such complexity reduction can be achieved for any axis-symmetric array. For such class of arrays it enables real-time implementation of the prewhitening step for complex-valued signals. The performance of the proposed procedure is shown in application to a blind source separation (BSS) problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信