{"title":"无线传感器网络中的时间隐私","authors":"P. Kamat, Wenyuan Xu, W. Trappe, Yanyong Zhang","doi":"10.1109/ICDCS.2007.146","DOIUrl":null,"url":null,"abstract":"Although the content of sensor messages describing \"events of interest\" may be encrypted to provide confidentiality, the context surrounding these events may also be sensitive and therefore should be protected from eavesdroppers. An adversary armed with knowledge of the network deployment, routing algorithms, and the base-station (data sink) location can infer the temporal patterns of interesting events by merely monitoring the arrival of packets at the sink, thereby allowing the adversary to remotely track the spatio-temporal evolution of a sensed event. In this paper, we introduce the problem of temporal privacy for delay- tolerant sensor networks and propose adaptive buffering at intermediate nodes on the source-sink routing path to obfuscate temporal information from an adversary. We first present the effect of buffering on temporal privacy using an information-theoretic formulation and then examine the effect that delaying packets has on buffer occupancy. We evaluate our privacy enhancement strategies using simulations, where privacy is quantified in terms of the adversary's estimation error.","PeriodicalId":170317,"journal":{"name":"27th International Conference on Distributed Computing Systems (ICDCS '07)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Temporal Privacy in Wireless Sensor Networks\",\"authors\":\"P. Kamat, Wenyuan Xu, W. Trappe, Yanyong Zhang\",\"doi\":\"10.1109/ICDCS.2007.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the content of sensor messages describing \\\"events of interest\\\" may be encrypted to provide confidentiality, the context surrounding these events may also be sensitive and therefore should be protected from eavesdroppers. An adversary armed with knowledge of the network deployment, routing algorithms, and the base-station (data sink) location can infer the temporal patterns of interesting events by merely monitoring the arrival of packets at the sink, thereby allowing the adversary to remotely track the spatio-temporal evolution of a sensed event. In this paper, we introduce the problem of temporal privacy for delay- tolerant sensor networks and propose adaptive buffering at intermediate nodes on the source-sink routing path to obfuscate temporal information from an adversary. We first present the effect of buffering on temporal privacy using an information-theoretic formulation and then examine the effect that delaying packets has on buffer occupancy. We evaluate our privacy enhancement strategies using simulations, where privacy is quantified in terms of the adversary's estimation error.\",\"PeriodicalId\":170317,\"journal\":{\"name\":\"27th International Conference on Distributed Computing Systems (ICDCS '07)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"27th International Conference on Distributed Computing Systems (ICDCS '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2007.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Distributed Computing Systems (ICDCS '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2007.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Although the content of sensor messages describing "events of interest" may be encrypted to provide confidentiality, the context surrounding these events may also be sensitive and therefore should be protected from eavesdroppers. An adversary armed with knowledge of the network deployment, routing algorithms, and the base-station (data sink) location can infer the temporal patterns of interesting events by merely monitoring the arrival of packets at the sink, thereby allowing the adversary to remotely track the spatio-temporal evolution of a sensed event. In this paper, we introduce the problem of temporal privacy for delay- tolerant sensor networks and propose adaptive buffering at intermediate nodes on the source-sink routing path to obfuscate temporal information from an adversary. We first present the effect of buffering on temporal privacy using an information-theoretic formulation and then examine the effect that delaying packets has on buffer occupancy. We evaluate our privacy enhancement strategies using simulations, where privacy is quantified in terms of the adversary's estimation error.