基于元强化学习的车联网车辆任务卸载

Liyuan Wei, Yang Yang, Xiaogao Jia, Caixing Shao
{"title":"基于元强化学习的车联网车辆任务卸载","authors":"Liyuan Wei, Yang Yang, Xiaogao Jia, Caixing Shao","doi":"10.1109/ISCTIS58954.2023.10213055","DOIUrl":null,"url":null,"abstract":"With the advent of the 5G era, the Internet of Things (IoT) has been rapidly developing. As a crucial component of the IoT, the Internet of Vehicles (IoV) faces a significant amount of computational tasks. However, the limited computing capability of individual vehicles alone is insufficient to handle these tasks. Therefore, it becomes necessary to offload some of the computational tasks to edge computing services. In this paper, vehicles in IoV are used as the research object, and the edge computing servers deployed at the roadside constitute the IoV edge computing offload network. We propose the Meta-Reinforcement Learning-based Vehicle Task Offloading (MRLVTO) algorithm, aiming to optimize the computational latency of the tasks. Our proposed algorithm demonstrates significant improvement in reducing latency compared to other offloading algorithms.","PeriodicalId":334790,"journal":{"name":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Reinforcement Learning-based Vehicle Task Offloading in Internet of Vehicles (IoV)\",\"authors\":\"Liyuan Wei, Yang Yang, Xiaogao Jia, Caixing Shao\",\"doi\":\"10.1109/ISCTIS58954.2023.10213055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the 5G era, the Internet of Things (IoT) has been rapidly developing. As a crucial component of the IoT, the Internet of Vehicles (IoV) faces a significant amount of computational tasks. However, the limited computing capability of individual vehicles alone is insufficient to handle these tasks. Therefore, it becomes necessary to offload some of the computational tasks to edge computing services. In this paper, vehicles in IoV are used as the research object, and the edge computing servers deployed at the roadside constitute the IoV edge computing offload network. We propose the Meta-Reinforcement Learning-based Vehicle Task Offloading (MRLVTO) algorithm, aiming to optimize the computational latency of the tasks. Our proposed algorithm demonstrates significant improvement in reducing latency compared to other offloading algorithms.\",\"PeriodicalId\":334790,\"journal\":{\"name\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS58954.2023.10213055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS58954.2023.10213055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着5G时代的到来,物联网(IoT)得到了快速发展。作为物联网的重要组成部分,车联网面临着大量的计算任务。然而,单个车辆有限的计算能力不足以处理这些任务。因此,有必要将一些计算任务卸载到边缘计算服务。本文以车联网中的车辆为研究对象,部署在路边的边缘计算服务器构成车联网边缘计算卸载网络。提出了基于元强化学习的车辆任务卸载(MRLVTO)算法,以优化任务的计算延迟。与其他卸载算法相比,我们提出的算法在减少延迟方面有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Reinforcement Learning-based Vehicle Task Offloading in Internet of Vehicles (IoV)
With the advent of the 5G era, the Internet of Things (IoT) has been rapidly developing. As a crucial component of the IoT, the Internet of Vehicles (IoV) faces a significant amount of computational tasks. However, the limited computing capability of individual vehicles alone is insufficient to handle these tasks. Therefore, it becomes necessary to offload some of the computational tasks to edge computing services. In this paper, vehicles in IoV are used as the research object, and the edge computing servers deployed at the roadside constitute the IoV edge computing offload network. We propose the Meta-Reinforcement Learning-based Vehicle Task Offloading (MRLVTO) algorithm, aiming to optimize the computational latency of the tasks. Our proposed algorithm demonstrates significant improvement in reducing latency compared to other offloading algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信