基于决策树和Naïve贝叶斯分类器的肥胖水平分类[j] .江苏大学学报(自然科学版),Vol. 3 No. 1&2 [June, 2022], pp. 113-121113

Salisu Garba, Marzuk Abdullahi, Umar Abdullahi Umar, Nura Tijjani Wurnor
{"title":"基于决策树和Naïve贝叶斯分类器的肥胖水平分类[j] .江苏大学学报(自然科学版),Vol. 3 No. 1&2 [June, 2022], pp. 113-121113","authors":"Salisu Garba, Marzuk Abdullahi, Umar Abdullahi Umar, Nura Tijjani Wurnor","doi":"10.56471/slujst.v3i.175","DOIUrl":null,"url":null,"abstract":"This paper proposed an approach for obesity levels classification. The main contribution of this work is the use of boosting and bagging techniques in the decision tree (DT) and naïve Bayes (NB) classification model to improve the accuracy of obesity levels classification. This is achieved by introducing a boosting and bagging technique to further improve the recognition rate of obesity levels in the DT model, eliminating the correlated features, and eliminating the zero observations problem in the NB model. To validate the accuracy of the proposed approach, empirical evaluation was carried out using WEKA to determine the accuracy, precision, and recall. The results show that the DT classification model performs better in terms of accuracy and average precision. The proposed approach can help in software development for the classification of individuals with obesity","PeriodicalId":299818,"journal":{"name":"SLU Journal of Science and Technology","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sule Lamido University Journal of Science and Technology (SLUJST) Vol. 3 No. 1&2 [June, 2022], pp. 113-121113Obesity Level ClassificationBased on Decision Tree and Naïve Bayes Classifiers\",\"authors\":\"Salisu Garba, Marzuk Abdullahi, Umar Abdullahi Umar, Nura Tijjani Wurnor\",\"doi\":\"10.56471/slujst.v3i.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed an approach for obesity levels classification. The main contribution of this work is the use of boosting and bagging techniques in the decision tree (DT) and naïve Bayes (NB) classification model to improve the accuracy of obesity levels classification. This is achieved by introducing a boosting and bagging technique to further improve the recognition rate of obesity levels in the DT model, eliminating the correlated features, and eliminating the zero observations problem in the NB model. To validate the accuracy of the proposed approach, empirical evaluation was carried out using WEKA to determine the accuracy, precision, and recall. The results show that the DT classification model performs better in terms of accuracy and average precision. The proposed approach can help in software development for the classification of individuals with obesity\",\"PeriodicalId\":299818,\"journal\":{\"name\":\"SLU Journal of Science and Technology\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLU Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56471/slujst.v3i.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56471/slujst.v3i.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种肥胖水平分类方法。本工作的主要贡献是在决策树(DT)和naïve贝叶斯(NB)分类模型中使用了boosting和bagging技术来提高肥胖水平分类的准确性。这是通过引入boosting和bagging技术来进一步提高DT模型中肥胖水平的识别率,消除相关特征,消除NB模型中的零观测值问题来实现的。为了验证该方法的准确性,我们使用WEKA进行了实证评估,以确定准确率、精密度和召回率。结果表明,DT分类模型在准确率和平均精度方面都有较好的表现。提出的方法可以帮助软件开发对肥胖个体进行分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sule Lamido University Journal of Science and Technology (SLUJST) Vol. 3 No. 1&2 [June, 2022], pp. 113-121113Obesity Level ClassificationBased on Decision Tree and Naïve Bayes Classifiers
This paper proposed an approach for obesity levels classification. The main contribution of this work is the use of boosting and bagging techniques in the decision tree (DT) and naïve Bayes (NB) classification model to improve the accuracy of obesity levels classification. This is achieved by introducing a boosting and bagging technique to further improve the recognition rate of obesity levels in the DT model, eliminating the correlated features, and eliminating the zero observations problem in the NB model. To validate the accuracy of the proposed approach, empirical evaluation was carried out using WEKA to determine the accuracy, precision, and recall. The results show that the DT classification model performs better in terms of accuracy and average precision. The proposed approach can help in software development for the classification of individuals with obesity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信