蛋白磷酸化位点预测的自适应局部有效核机

Paul Yoo, Y. Ho, B. Zhou, Albert Y. Zomaya
{"title":"蛋白磷酸化位点预测的自适应局部有效核机","authors":"Paul Yoo, Y. Ho, B. Zhou, Albert Y. Zomaya","doi":"10.1109/IPDPS.2008.4536173","DOIUrl":null,"url":null,"abstract":"In this study, we propose a new machine learning model namely, adaptive locality-effective kernel machine (Adaptive-LEKM) for protein phosphorylation site prediction. Adaptive-LEKM proves to be more accurate and exhibits a much stable predictive performance over the existing machine learning models. Adaptive-LEKM is trained using Position Specific Scoring Matrix (PSSM) to detect possible protein phosphorylation sites for a target sequence. The performance of the proposed model was compared to seven existing different machine learning models on newly proposed PS-Benchmark_l dataset in terms of accuracy, sensitivity, specificity and correlation coefficient. Adaptive-LEKM showed better predictive performance with 82.3% accuracy, 80.1% sensitivity, 84.5% specificity and 0.65 correlation- coefficient than contemporary machine learning models.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Locality-Effective Kernel Machine for protein phosphorylation site prediction\",\"authors\":\"Paul Yoo, Y. Ho, B. Zhou, Albert Y. Zomaya\",\"doi\":\"10.1109/IPDPS.2008.4536173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a new machine learning model namely, adaptive locality-effective kernel machine (Adaptive-LEKM) for protein phosphorylation site prediction. Adaptive-LEKM proves to be more accurate and exhibits a much stable predictive performance over the existing machine learning models. Adaptive-LEKM is trained using Position Specific Scoring Matrix (PSSM) to detect possible protein phosphorylation sites for a target sequence. The performance of the proposed model was compared to seven existing different machine learning models on newly proposed PS-Benchmark_l dataset in terms of accuracy, sensitivity, specificity and correlation coefficient. Adaptive-LEKM showed better predictive performance with 82.3% accuracy, 80.1% sensitivity, 84.5% specificity and 0.65 correlation- coefficient than contemporary machine learning models.\",\"PeriodicalId\":162608,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2008.4536173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项研究中,我们提出了一种新的机器学习模型,即自适应位置有效核机(adaptive - lekm),用于蛋白质磷酸化位点的预测。与现有的机器学习模型相比,Adaptive-LEKM被证明更准确,并表现出更稳定的预测性能。适应性lekm使用位置特异性评分矩阵(PSSM)进行训练,以检测目标序列可能的蛋白质磷酸化位点。在新提出的ps - benchmark_1数据集上,将该模型与现有的7种不同的机器学习模型在准确性、灵敏度、特异性和相关系数方面进行了比较。与当代机器学习模型相比,Adaptive-LEKM的预测准确率为82.3%,灵敏度为80.1%,特异性为84.5%,相关系数为0.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Locality-Effective Kernel Machine for protein phosphorylation site prediction
In this study, we propose a new machine learning model namely, adaptive locality-effective kernel machine (Adaptive-LEKM) for protein phosphorylation site prediction. Adaptive-LEKM proves to be more accurate and exhibits a much stable predictive performance over the existing machine learning models. Adaptive-LEKM is trained using Position Specific Scoring Matrix (PSSM) to detect possible protein phosphorylation sites for a target sequence. The performance of the proposed model was compared to seven existing different machine learning models on newly proposed PS-Benchmark_l dataset in terms of accuracy, sensitivity, specificity and correlation coefficient. Adaptive-LEKM showed better predictive performance with 82.3% accuracy, 80.1% sensitivity, 84.5% specificity and 0.65 correlation- coefficient than contemporary machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信