基于数据驱动模型的热压锻造工厂仿真调度

Seyoung Kim, Jeongmi Lee, Hyeongrok Heo, K. Ryu
{"title":"基于数据驱动模型的热压锻造工厂仿真调度","authors":"Seyoung Kim, Jeongmi Lee, Hyeongrok Heo, K. Ryu","doi":"10.33965/ac2019_201912p041","DOIUrl":null,"url":null,"abstract":"We use a genetic algorithm (GA) to search for an optimal production schedule for a hot press forging factory. Our GA evaluates each candidate schedule by simulating its execution using cost models of all the equipment involved in the forging process. The cost models are learned from data collected from IoT infrastructure installed at our target factory. Experimental results show that our proposed method gives schedules of higher productivity with lower energy cost compared to the heuristic method that is similar to the real practices at our target hot press forging factory.","PeriodicalId":432605,"journal":{"name":"Proceedings of the 16th International Conference on Applied Computing 2019","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIMULATION-BASED SCHEDULING FOR A HOT PRESS FORGING FACTORY USING DATA-DRIVEN MODELS\",\"authors\":\"Seyoung Kim, Jeongmi Lee, Hyeongrok Heo, K. Ryu\",\"doi\":\"10.33965/ac2019_201912p041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a genetic algorithm (GA) to search for an optimal production schedule for a hot press forging factory. Our GA evaluates each candidate schedule by simulating its execution using cost models of all the equipment involved in the forging process. The cost models are learned from data collected from IoT infrastructure installed at our target factory. Experimental results show that our proposed method gives schedules of higher productivity with lower energy cost compared to the heuristic method that is similar to the real practices at our target hot press forging factory.\",\"PeriodicalId\":432605,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Applied Computing 2019\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Applied Computing 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33965/ac2019_201912p041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Applied Computing 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33965/ac2019_201912p041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用遗传算法对热压锻压工厂的最优生产计划进行了求解。我们的遗传算法通过使用锻造过程中涉及的所有设备的成本模型模拟其执行来评估每个候选计划。成本模型是从我们目标工厂安装的物联网基础设施收集的数据中学习的。实验结果表明,与启发式方法相比,该方法能以较低的能源成本获得较高的生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIMULATION-BASED SCHEDULING FOR A HOT PRESS FORGING FACTORY USING DATA-DRIVEN MODELS
We use a genetic algorithm (GA) to search for an optimal production schedule for a hot press forging factory. Our GA evaluates each candidate schedule by simulating its execution using cost models of all the equipment involved in the forging process. The cost models are learned from data collected from IoT infrastructure installed at our target factory. Experimental results show that our proposed method gives schedules of higher productivity with lower energy cost compared to the heuristic method that is similar to the real practices at our target hot press forging factory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信