使用非参数β混合模型聚类DNA甲基化表达

Lin Zhang, Jia Meng, Hui Liu, Yufei Huang
{"title":"使用非参数β混合模型聚类DNA甲基化表达","authors":"Lin Zhang, Jia Meng, Hui Liu, Yufei Huang","doi":"10.1109/GENSiPS.2011.6169472","DOIUrl":null,"url":null,"abstract":"The problem of defining the clustering structure in DNA methylation expressions is considered. A Dirichlet process beta mixture model (DPBMM) is proposed that models the DNA methylation data array. The model allows automatic learning of the cluster structure parameters such as the cluster mixing proportion, the models of each cluster, and especially the number of clusters. To enable the learning, we proposed a Gibbs sampling algorithm for computing the posterior distributions, hence the estimates of the parameters. We investigate the performance of the proposed clustering algorithm via simulation.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Clustering DNA methylation expressions using nonparametric beta mixture model\",\"authors\":\"Lin Zhang, Jia Meng, Hui Liu, Yufei Huang\",\"doi\":\"10.1109/GENSiPS.2011.6169472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of defining the clustering structure in DNA methylation expressions is considered. A Dirichlet process beta mixture model (DPBMM) is proposed that models the DNA methylation data array. The model allows automatic learning of the cluster structure parameters such as the cluster mixing proportion, the models of each cluster, and especially the number of clusters. To enable the learning, we proposed a Gibbs sampling algorithm for computing the posterior distributions, hence the estimates of the parameters. We investigate the performance of the proposed clustering algorithm via simulation.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

考虑了DNA甲基化表达中聚类结构的定义问题。提出了一种用于DNA甲基化数据阵列建模的Dirichlet过程- β混合模型(DPBMM)。该模型允许自动学习簇的结构参数,如簇的混合比例,每个簇的模型,特别是簇的数量。为了实现学习,我们提出了一种Gibbs抽样算法来计算后验分布,从而估计参数。通过仿真研究了所提出的聚类算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering DNA methylation expressions using nonparametric beta mixture model
The problem of defining the clustering structure in DNA methylation expressions is considered. A Dirichlet process beta mixture model (DPBMM) is proposed that models the DNA methylation data array. The model allows automatic learning of the cluster structure parameters such as the cluster mixing proportion, the models of each cluster, and especially the number of clusters. To enable the learning, we proposed a Gibbs sampling algorithm for computing the posterior distributions, hence the estimates of the parameters. We investigate the performance of the proposed clustering algorithm via simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信