{"title":"快速渲染细分表面","authors":"K. Pulli, Mark E. Segal","doi":"10.1145/253607.253869","DOIUrl":null,"url":null,"abstract":"Subdivision surfaces provide a curved surface representation that is useful in a number of applications, including modeling surfaces of arbitrary topological type, fitting scattered data, and geometric compression and automatic level-of-detail generation using wavelets. Subdivision surfaces also provide an attractive representation for fast rendering, since they can directly represent complex surfaces of arbitrary topology.","PeriodicalId":414647,"journal":{"name":"SIGGRAPH Visual Proceedings","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Fast rendering of subdivision surfaces\",\"authors\":\"K. Pulli, Mark E. Segal\",\"doi\":\"10.1145/253607.253869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subdivision surfaces provide a curved surface representation that is useful in a number of applications, including modeling surfaces of arbitrary topological type, fitting scattered data, and geometric compression and automatic level-of-detail generation using wavelets. Subdivision surfaces also provide an attractive representation for fast rendering, since they can directly represent complex surfaces of arbitrary topology.\",\"PeriodicalId\":414647,\"journal\":{\"name\":\"SIGGRAPH Visual Proceedings\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Visual Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/253607.253869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Visual Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/253607.253869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subdivision surfaces provide a curved surface representation that is useful in a number of applications, including modeling surfaces of arbitrary topological type, fitting scattered data, and geometric compression and automatic level-of-detail generation using wavelets. Subdivision surfaces also provide an attractive representation for fast rendering, since they can directly represent complex surfaces of arbitrary topology.