基于步态的深度卷积神经网络年龄估计

Shaoxiong Zhang, Yunhong Wang, Annan Li
{"title":"基于步态的深度卷积神经网络年龄估计","authors":"Shaoxiong Zhang, Yunhong Wang, Annan Li","doi":"10.1109/ICB45273.2019.8987240","DOIUrl":null,"url":null,"abstract":"Gait is a unique biometric identifier for its non-invasive and low-cooperative features. Gait-based attribute recognition can play a crucial role in a wide range of applications, such as intelligent surveillance and criminal retrieval. However, due to the lack of data, there are relatively few studies which apply deep convolutional neural networks on gait attribute recognition. In this study, with the new progress in public gait dataset, we proposed a deep convolutional neural network with multi-task learning for gait-based human age estimation. Gait energy images are directly fed into our model for age estimation while gender information is also integrated for improving the performance of age estimation. The experiments on large-scale OULP-Age dataset show that our model outperforms the state-of-the-art.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Gait-Based Age Estimation with Deep Convolutional Neural Network\",\"authors\":\"Shaoxiong Zhang, Yunhong Wang, Annan Li\",\"doi\":\"10.1109/ICB45273.2019.8987240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait is a unique biometric identifier for its non-invasive and low-cooperative features. Gait-based attribute recognition can play a crucial role in a wide range of applications, such as intelligent surveillance and criminal retrieval. However, due to the lack of data, there are relatively few studies which apply deep convolutional neural networks on gait attribute recognition. In this study, with the new progress in public gait dataset, we proposed a deep convolutional neural network with multi-task learning for gait-based human age estimation. Gait energy images are directly fed into our model for age estimation while gender information is also integrated for improving the performance of age estimation. The experiments on large-scale OULP-Age dataset show that our model outperforms the state-of-the-art.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

步态具有非侵入性和低协作性的特点,是一种独特的生物特征识别方法。基于步态的属性识别在智能监控、罪犯检索等领域具有广泛的应用前景。然而,由于数据的缺乏,将深度卷积神经网络应用于步态属性识别的研究相对较少。在这项研究中,我们利用公共步态数据集的新进展,提出了一种基于多任务学习的深度卷积神经网络,用于基于步态的人类年龄估计。将步态能量图像直接输入到模型中进行年龄估计,同时将性别信息集成到模型中以提高年龄估计的性能。在大规模OULP-Age数据集上的实验表明,我们的模型优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait-Based Age Estimation with Deep Convolutional Neural Network
Gait is a unique biometric identifier for its non-invasive and low-cooperative features. Gait-based attribute recognition can play a crucial role in a wide range of applications, such as intelligent surveillance and criminal retrieval. However, due to the lack of data, there are relatively few studies which apply deep convolutional neural networks on gait attribute recognition. In this study, with the new progress in public gait dataset, we proposed a deep convolutional neural network with multi-task learning for gait-based human age estimation. Gait energy images are directly fed into our model for age estimation while gender information is also integrated for improving the performance of age estimation. The experiments on large-scale OULP-Age dataset show that our model outperforms the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信