快速图傅里叶变换的近似误差分析

Luc Le Magoarou, Nicolas Tremblay, R. Gribonval
{"title":"快速图傅里叶变换的近似误差分析","authors":"Luc Le Magoarou, Nicolas Tremblay, R. Gribonval","doi":"10.1109/ACSSC.2017.8335133","DOIUrl":null,"url":null,"abstract":"The graph Fourier transform (GFT) is in general dense and requires O(n2) time to compute and O(n2) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analyzing the approximation error of the fast graph Fourier transform\",\"authors\":\"Luc Le Magoarou, Nicolas Tremblay, R. Gribonval\",\"doi\":\"10.1109/ACSSC.2017.8335133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graph Fourier transform (GFT) is in general dense and requires O(n2) time to compute and O(n2) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图形傅里叶变换(GFT)通常是密集的,需要O(n2)的计算时间和O(n2)的存储空间。在本文中,我们继续我们之前关于近似快速图傅里叶变换(FGFT)的工作。FGFT通过截断Jacobi算法计算,并定义为J个给定旋转(非常稀疏正交矩阵)的乘积。截断参数J表示转换精度与计算时间(和存储空间)之间的权衡。我们进一步探讨了这种权衡,并研究了在不同类型的图上,近似误差是如何沿着谱分布的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the approximation error of the fast graph Fourier transform
The graph Fourier transform (GFT) is in general dense and requires O(n2) time to compute and O(n2) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信