Somayeh Danafar, M. Piórkowski, Krzysztof Krysczcuk
{"title":"利用移动网络事件发现移动模式的贝叶斯框架","authors":"Somayeh Danafar, M. Piórkowski, Krzysztof Krysczcuk","doi":"10.23919/EUSIPCO.2017.8081372","DOIUrl":null,"url":null,"abstract":"Understanding human mobility patterns is of great importance for planning urban and extra-urban spaces and communication infrastructures. The omnipresence of mobile telephony in today's society opens new avenues of discovering the patterns of human mobility by means of analyzing cellular network data. Of particular interest is analyzing passively collected Network Events (NEs) due to their scalability. However, mobility pattern analysis based on network events is challenging because of the coarse granularity of NEs. In this paper, we propose network event-based Bayesian approaches for mobility pattern recognition and reconstruction, mode of transport recognition and modeling the frequent trajectories.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bayesian framework for mobility pattern discovery using mobile network events\",\"authors\":\"Somayeh Danafar, M. Piórkowski, Krzysztof Krysczcuk\",\"doi\":\"10.23919/EUSIPCO.2017.8081372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding human mobility patterns is of great importance for planning urban and extra-urban spaces and communication infrastructures. The omnipresence of mobile telephony in today's society opens new avenues of discovering the patterns of human mobility by means of analyzing cellular network data. Of particular interest is analyzing passively collected Network Events (NEs) due to their scalability. However, mobility pattern analysis based on network events is challenging because of the coarse granularity of NEs. In this paper, we propose network event-based Bayesian approaches for mobility pattern recognition and reconstruction, mode of transport recognition and modeling the frequent trajectories.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian framework for mobility pattern discovery using mobile network events
Understanding human mobility patterns is of great importance for planning urban and extra-urban spaces and communication infrastructures. The omnipresence of mobile telephony in today's society opens new avenues of discovering the patterns of human mobility by means of analyzing cellular network data. Of particular interest is analyzing passively collected Network Events (NEs) due to their scalability. However, mobility pattern analysis based on network events is challenging because of the coarse granularity of NEs. In this paper, we propose network event-based Bayesian approaches for mobility pattern recognition and reconstruction, mode of transport recognition and modeling the frequent trajectories.