利用移动网络事件发现移动模式的贝叶斯框架

Somayeh Danafar, M. Piórkowski, Krzysztof Krysczcuk
{"title":"利用移动网络事件发现移动模式的贝叶斯框架","authors":"Somayeh Danafar, M. Piórkowski, Krzysztof Krysczcuk","doi":"10.23919/EUSIPCO.2017.8081372","DOIUrl":null,"url":null,"abstract":"Understanding human mobility patterns is of great importance for planning urban and extra-urban spaces and communication infrastructures. The omnipresence of mobile telephony in today's society opens new avenues of discovering the patterns of human mobility by means of analyzing cellular network data. Of particular interest is analyzing passively collected Network Events (NEs) due to their scalability. However, mobility pattern analysis based on network events is challenging because of the coarse granularity of NEs. In this paper, we propose network event-based Bayesian approaches for mobility pattern recognition and reconstruction, mode of transport recognition and modeling the frequent trajectories.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bayesian framework for mobility pattern discovery using mobile network events\",\"authors\":\"Somayeh Danafar, M. Piórkowski, Krzysztof Krysczcuk\",\"doi\":\"10.23919/EUSIPCO.2017.8081372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding human mobility patterns is of great importance for planning urban and extra-urban spaces and communication infrastructures. The omnipresence of mobile telephony in today's society opens new avenues of discovering the patterns of human mobility by means of analyzing cellular network data. Of particular interest is analyzing passively collected Network Events (NEs) due to their scalability. However, mobility pattern analysis based on network events is challenging because of the coarse granularity of NEs. In this paper, we propose network event-based Bayesian approaches for mobility pattern recognition and reconstruction, mode of transport recognition and modeling the frequent trajectories.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

了解人类流动模式对于规划城市和城市外空间以及通信基础设施具有重要意义。移动电话在当今社会的无所不在,为通过分析蜂窝网络数据来发现人类移动模式开辟了新的途径。由于其可伸缩性,对被动收集的网络事件(Network event, ne)的分析特别有趣。然而,由于网元粒度较粗,基于网络事件的迁移模式分析具有一定的挑战性。在本文中,我们提出了基于网络事件的移动模式识别和重建、运输方式识别和频繁轨迹建模的贝叶斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian framework for mobility pattern discovery using mobile network events
Understanding human mobility patterns is of great importance for planning urban and extra-urban spaces and communication infrastructures. The omnipresence of mobile telephony in today's society opens new avenues of discovering the patterns of human mobility by means of analyzing cellular network data. Of particular interest is analyzing passively collected Network Events (NEs) due to their scalability. However, mobility pattern analysis based on network events is challenging because of the coarse granularity of NEs. In this paper, we propose network event-based Bayesian approaches for mobility pattern recognition and reconstruction, mode of transport recognition and modeling the frequent trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信