{"title":"一种用于图像轮廓平滑和压缩的自适应分割合并方法","authors":"Yi Xiao, J. Zou, Hong Yan","doi":"10.1109/ISSPA.1999.818117","DOIUrl":null,"url":null,"abstract":"The contour of a digital image usually has a large number of edges and may suffer from quantization error and noise. In feature extraction or shape matching algorithms, contour smoothing must be performed to reduce noise and quantization error and to compress the data while still keeping its original shape. This study presents a split-and-merge method with adaptive tolerance value for smoothing image contours. The tolerance value depends on the grid constant D and the length of line L in collinearity tests. Experimental results on real binary contours show the method is very effective and precise for smoothing of binary image.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An adaptive split-and-merge method for smoothing and compression of image contours\",\"authors\":\"Yi Xiao, J. Zou, Hong Yan\",\"doi\":\"10.1109/ISSPA.1999.818117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contour of a digital image usually has a large number of edges and may suffer from quantization error and noise. In feature extraction or shape matching algorithms, contour smoothing must be performed to reduce noise and quantization error and to compress the data while still keeping its original shape. This study presents a split-and-merge method with adaptive tolerance value for smoothing image contours. The tolerance value depends on the grid constant D and the length of line L in collinearity tests. Experimental results on real binary contours show the method is very effective and precise for smoothing of binary image.\",\"PeriodicalId\":302569,\"journal\":{\"name\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1999.818117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive split-and-merge method for smoothing and compression of image contours
The contour of a digital image usually has a large number of edges and may suffer from quantization error and noise. In feature extraction or shape matching algorithms, contour smoothing must be performed to reduce noise and quantization error and to compress the data while still keeping its original shape. This study presents a split-and-merge method with adaptive tolerance value for smoothing image contours. The tolerance value depends on the grid constant D and the length of line L in collinearity tests. Experimental results on real binary contours show the method is very effective and precise for smoothing of binary image.