面向视觉问答的语境关系融合模型

Haotian Zhang, Wei Wu
{"title":"面向视觉问答的语境关系融合模型","authors":"Haotian Zhang, Wei Wu","doi":"10.1109/ICIP46576.2022.9897563","DOIUrl":null,"url":null,"abstract":"Traditional VQA models tend to rely on language priors as a shortcut to answer questions and neglect visual information. To solve this problem, the latest approaches divide language priors into \"good\" language context and \"bad\" language bias through global features to benefit the language context and suppress the language bias. However, language priors cannot be meticulously divided by global features. In this paper, we propose a novel Context Relation Fusion Model (CRFM), which produces comprehensive contextual features forcing the VQA model to more carefully distinguish language priors into \"good\" language context and \"bad\" language bias. Specifically, we utilize the Visual Relation Fusion Model (VRFM) and Question Relation Fusion Model (QRFM) to learn local critical contextual information and then perform information enhancement through the Attended Features Fusion Model (AFFM). Experiments show that our CRFM achieves state-of-the-art performance on the VQA-CP v2 dataset.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context Relation Fusion Model for Visual Question Answering\",\"authors\":\"Haotian Zhang, Wei Wu\",\"doi\":\"10.1109/ICIP46576.2022.9897563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional VQA models tend to rely on language priors as a shortcut to answer questions and neglect visual information. To solve this problem, the latest approaches divide language priors into \\\"good\\\" language context and \\\"bad\\\" language bias through global features to benefit the language context and suppress the language bias. However, language priors cannot be meticulously divided by global features. In this paper, we propose a novel Context Relation Fusion Model (CRFM), which produces comprehensive contextual features forcing the VQA model to more carefully distinguish language priors into \\\"good\\\" language context and \\\"bad\\\" language bias. Specifically, we utilize the Visual Relation Fusion Model (VRFM) and Question Relation Fusion Model (QRFM) to learn local critical contextual information and then perform information enhancement through the Attended Features Fusion Model (AFFM). Experiments show that our CRFM achieves state-of-the-art performance on the VQA-CP v2 dataset.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的VQA模型倾向于依赖语言先验作为回答问题的捷径,而忽略了视觉信息。为了解决这一问题,最新的方法通过全局特征将语言先验分为“好的”语言语境和“坏的”语言偏见,从而有利于语言语境,抑制语言偏见。然而,语言先验不能按照全局特征进行细致的划分。在本文中,我们提出了一种新的上下文关系融合模型(CRFM),该模型产生了全面的上下文特征,迫使VQA模型更仔细地将语言先验区分为“好的”语言上下文和“坏的”语言偏见。具体来说,我们利用视觉关系融合模型(VRFM)和问题关系融合模型(QRFM)来学习局部关键上下文信息,然后通过出席特征融合模型(AFFM)进行信息增强。实验表明,我们的CRFM在VQA-CP v2数据集上达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context Relation Fusion Model for Visual Question Answering
Traditional VQA models tend to rely on language priors as a shortcut to answer questions and neglect visual information. To solve this problem, the latest approaches divide language priors into "good" language context and "bad" language bias through global features to benefit the language context and suppress the language bias. However, language priors cannot be meticulously divided by global features. In this paper, we propose a novel Context Relation Fusion Model (CRFM), which produces comprehensive contextual features forcing the VQA model to more carefully distinguish language priors into "good" language context and "bad" language bias. Specifically, we utilize the Visual Relation Fusion Model (VRFM) and Question Relation Fusion Model (QRFM) to learn local critical contextual information and then perform information enhancement through the Attended Features Fusion Model (AFFM). Experiments show that our CRFM achieves state-of-the-art performance on the VQA-CP v2 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信