基于小波分解和偏差补偿随机森林的太阳能光伏发电预测

Po-Han Chiang, Siva Prasad Varma Chiluvuri, S. Dey, Truong Q. Nguyen
{"title":"基于小波分解和偏差补偿随机森林的太阳能光伏发电预测","authors":"Po-Han Chiang, Siva Prasad Varma Chiluvuri, S. Dey, Truong Q. Nguyen","doi":"10.1109/GREENTECH.2017.44","DOIUrl":null,"url":null,"abstract":"The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.","PeriodicalId":104496,"journal":{"name":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Forecasting of Solar Photovoltaic System Power Generation Using Wavelet Decomposition and Bias-Compensated Random Forest\",\"authors\":\"Po-Han Chiang, Siva Prasad Varma Chiluvuri, S. Dey, Truong Q. Nguyen\",\"doi\":\"10.1109/GREENTECH.2017.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.\",\"PeriodicalId\":104496,\"journal\":{\"name\":\"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENTECH.2017.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2017.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

使用太阳能光伏发电(PV)是一个很有前途的解决方案,以减少电网的电力消耗和二氧化碳排放。然而,利用太阳能光伏发电的好处受到其高度间歇性和不可靠的性质的限制。太阳辐照度的非平稳和非线性特性使得传统的时间序列和人工智能(AI)方法难以预测太阳能光伏。为了解决上述挑战,我们提出了一种将平稳小波变换(SWT)和随机森林模型相结合的新技术。与传统的SWT分解-重构过程不同,我们只采用小波分解从原始数据中提取信息,获得了更好的时频分辨率。我们还提出了一种偏差补偿技术来最小化预测误差。我们使用校园微电网传感器数据的实验结果表明,所提出的方法对不同的预测时间范围具有鲁棒性,并且预测误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting of Solar Photovoltaic System Power Generation Using Wavelet Decomposition and Bias-Compensated Random Forest
The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信