{"title":"基于小波分解和偏差补偿随机森林的太阳能光伏发电预测","authors":"Po-Han Chiang, Siva Prasad Varma Chiluvuri, S. Dey, Truong Q. Nguyen","doi":"10.1109/GREENTECH.2017.44","DOIUrl":null,"url":null,"abstract":"The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.","PeriodicalId":104496,"journal":{"name":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Forecasting of Solar Photovoltaic System Power Generation Using Wavelet Decomposition and Bias-Compensated Random Forest\",\"authors\":\"Po-Han Chiang, Siva Prasad Varma Chiluvuri, S. Dey, Truong Q. Nguyen\",\"doi\":\"10.1109/GREENTECH.2017.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.\",\"PeriodicalId\":104496,\"journal\":{\"name\":\"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENTECH.2017.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2017.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting of Solar Photovoltaic System Power Generation Using Wavelet Decomposition and Bias-Compensated Random Forest
The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.