基于肌电图的机械臂低维遥操作

P. Artemiadis, K. Kyriakopoulos
{"title":"基于肌电图的机械臂低维遥操作","authors":"P. Artemiadis, K. Kyriakopoulos","doi":"10.1109/IROS.2007.4399452","DOIUrl":null,"url":null,"abstract":"In robot teleoperation scenarios, the interface between the user and the robot is undoubtedly of high importance. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a remote robot arm. The proposed interface consists of surface EMG electrodes, placed at the user's skin at several locations on the arm, letting the user's upper limb free of bulky interface sensors or machinery usually found in conventional teleoperation systems. The motion of the human upper limb entails the activation of a large number of muscles (i.e. more than 30 muscles, not including finger movements). Moreover, the human arm has 7 degrees of freedom (DoFs) suggesting a wide variety of motions. Therefore, the mapping between these two high-dimensional data (i.e. the muscles activation and the motion of the human arm), is an extremely challenging issue. For this reason, a novel methodology is proposed here, where the mapping between the muscles activation and the motion of the user's arm is done in a low-dimensional space. Each of the high-dimensional input (muscle activation) and output (arm motion) vectors, is transformed into an individual low-dimensional space, where the mapping between the two low-dimensional vectors is then feasible. A state-space model is trained to map the low-dimensional representation of the muscles activation to the corresponding motion of the user's arm. After training, the state-space model can decode the human arm motion in real time with high accuracy, using only EMG recordings. The estimated motion is used to control a remote anthropomorphic robot arm. The accuracy of the proposed method is assessed through real-time experiments including motion in two-dimensional (2D) space.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"EMG-based teleoperation of a robot arm using low-dimensional representation\",\"authors\":\"P. Artemiadis, K. Kyriakopoulos\",\"doi\":\"10.1109/IROS.2007.4399452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In robot teleoperation scenarios, the interface between the user and the robot is undoubtedly of high importance. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a remote robot arm. The proposed interface consists of surface EMG electrodes, placed at the user's skin at several locations on the arm, letting the user's upper limb free of bulky interface sensors or machinery usually found in conventional teleoperation systems. The motion of the human upper limb entails the activation of a large number of muscles (i.e. more than 30 muscles, not including finger movements). Moreover, the human arm has 7 degrees of freedom (DoFs) suggesting a wide variety of motions. Therefore, the mapping between these two high-dimensional data (i.e. the muscles activation and the motion of the human arm), is an extremely challenging issue. For this reason, a novel methodology is proposed here, where the mapping between the muscles activation and the motion of the user's arm is done in a low-dimensional space. Each of the high-dimensional input (muscle activation) and output (arm motion) vectors, is transformed into an individual low-dimensional space, where the mapping between the two low-dimensional vectors is then feasible. A state-space model is trained to map the low-dimensional representation of the muscles activation to the corresponding motion of the user's arm. After training, the state-space model can decode the human arm motion in real time with high accuracy, using only EMG recordings. The estimated motion is used to control a remote anthropomorphic robot arm. The accuracy of the proposed method is assessed through real-time experiments including motion in two-dimensional (2D) space.\",\"PeriodicalId\":227148,\"journal\":{\"name\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2007.4399452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4399452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

在机器人遥操作场景中,用户与机器人之间的界面无疑是非常重要的。本文利用人体上肢肌肉的肌电图信号作为用户与远程机械臂之间的控制接口。该界面由表面肌电图电极组成,放置在用户手臂皮肤上的几个位置,让用户的上肢不需要笨重的界面传感器或传统远程操作系统中常见的机械。人类上肢的运动需要激活大量的肌肉(即超过30块肌肉,不包括手指的运动)。此外,人的手臂有7个自由度(DoFs),这意味着各种各样的运动。因此,这两个高维数据(即肌肉激活和人类手臂运动)之间的映射是一个极具挑战性的问题。出于这个原因,本文提出了一种新的方法,即在低维空间中完成肌肉激活和用户手臂运动之间的映射。每个高维输入(肌肉激活)和输出(手臂运动)向量被转换成单独的低维空间,其中两个低维向量之间的映射是可行的。训练状态空间模型,将肌肉激活的低维表示映射到用户手臂的相应运动。经过训练后,状态空间模型仅使用肌电记录即可实时、高精度地解码人体手臂运动。估计的运动用于控制远程拟人机器人手臂。通过包括二维空间运动在内的实时实验,评估了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMG-based teleoperation of a robot arm using low-dimensional representation
In robot teleoperation scenarios, the interface between the user and the robot is undoubtedly of high importance. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a remote robot arm. The proposed interface consists of surface EMG electrodes, placed at the user's skin at several locations on the arm, letting the user's upper limb free of bulky interface sensors or machinery usually found in conventional teleoperation systems. The motion of the human upper limb entails the activation of a large number of muscles (i.e. more than 30 muscles, not including finger movements). Moreover, the human arm has 7 degrees of freedom (DoFs) suggesting a wide variety of motions. Therefore, the mapping between these two high-dimensional data (i.e. the muscles activation and the motion of the human arm), is an extremely challenging issue. For this reason, a novel methodology is proposed here, where the mapping between the muscles activation and the motion of the user's arm is done in a low-dimensional space. Each of the high-dimensional input (muscle activation) and output (arm motion) vectors, is transformed into an individual low-dimensional space, where the mapping between the two low-dimensional vectors is then feasible. A state-space model is trained to map the low-dimensional representation of the muscles activation to the corresponding motion of the user's arm. After training, the state-space model can decode the human arm motion in real time with high accuracy, using only EMG recordings. The estimated motion is used to control a remote anthropomorphic robot arm. The accuracy of the proposed method is assessed through real-time experiments including motion in two-dimensional (2D) space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信