S. Filimonov, A. Gavrilov, A. A. Dekterev, K. Litvintsev
{"title":"热对流与运动物体相互作用的数学模型","authors":"S. Filimonov, A. Gavrilov, A. A. Dekterev, K. Litvintsev","doi":"10.7242/1999-6691/2023.16.1.7","DOIUrl":null,"url":null,"abstract":"Представлена математическая модель, предназначенная для описания взаимодействия свободно-конвективного потока с подвижным телом. Модель реализована в рамках расчетного программного комплекса SigmaFlow, основанного на методах вычислительной гидродинамики. Свободно-конвективное течение описывается уравнениями Навье–Стокса в приближении Буссинеска, а модель подвижного тела реализована с помощью метода погруженных границ. В статье приведены результаты верификации предложенной математической модели на следующих тестовых задачах: нестационарное ламинарное обтекание цилиндра; естественная конвекция в канале между двумя цилиндрами; развитое конвективное течение в замкнутой прямоугольной области с неподвижной пластиной. Представлены результаты численного исследования движения пластины в свободно-конвективном потоке в замкнутом объеме (кювете) с горячей нижней и холодной верхней стенками. В результате расчетов обнаружено влияние подвижной пластины на динамику формирования крупномасштабных ячеек, на локальное распределение плотности теплового потока на нижней стенке и интегральный тепловой поток. В частности, выявлено локальное уменьшение теплового потока под пластиной, увеличение числа крупных вихрей в кювете и разрушение горизонтального градиента температуры, который наблюдается в случае закрепленной пластины. Кроме этого, для закрепленной пластины величина теплового потока под ней зависит от ее положения, а в случае подвижной пластины – от положения и направления ее движения. Качественное сравнение расчетов для двух разных чисел Релея c экспериментальными данными, полученными в Институте механики сплошных сред УрО РАН, показало, что поведение пластины имеет схожие закономерности.","PeriodicalId":273064,"journal":{"name":"Computational Continuum Mechanics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of the interaction of a thermal convective flow and a moving body\",\"authors\":\"S. Filimonov, A. Gavrilov, A. A. Dekterev, K. Litvintsev\",\"doi\":\"10.7242/1999-6691/2023.16.1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Представлена математическая модель, предназначенная для описания взаимодействия свободно-конвективного потока с подвижным телом. Модель реализована в рамках расчетного программного комплекса SigmaFlow, основанного на методах вычислительной гидродинамики. Свободно-конвективное течение описывается уравнениями Навье–Стокса в приближении Буссинеска, а модель подвижного тела реализована с помощью метода погруженных границ. В статье приведены результаты верификации предложенной математической модели на следующих тестовых задачах: нестационарное ламинарное обтекание цилиндра; естественная конвекция в канале между двумя цилиндрами; развитое конвективное течение в замкнутой прямоугольной области с неподвижной пластиной. Представлены результаты численного исследования движения пластины в свободно-конвективном потоке в замкнутом объеме (кювете) с горячей нижней и холодной верхней стенками. В результате расчетов обнаружено влияние подвижной пластины на динамику формирования крупномасштабных ячеек, на локальное распределение плотности теплового потока на нижней стенке и интегральный тепловой поток. В частности, выявлено локальное уменьшение теплового потока под пластиной, увеличение числа крупных вихрей в кювете и разрушение горизонтального градиента температуры, который наблюдается в случае закрепленной пластины. Кроме этого, для закрепленной пластины величина теплового потока под ней зависит от ее положения, а в случае подвижной пластины – от положения и направления ее движения. Качественное сравнение расчетов для двух разных чисел Релея c экспериментальными данными, полученными в Институте механики сплошных сред УрО РАН, показало, что поведение пластины имеет схожие закономерности.\",\"PeriodicalId\":273064,\"journal\":{\"name\":\"Computational Continuum Mechanics\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Continuum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7242/1999-6691/2023.16.1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Continuum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7242/1999-6691/2023.16.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical modeling of the interaction of a thermal convective flow and a moving body
Представлена математическая модель, предназначенная для описания взаимодействия свободно-конвективного потока с подвижным телом. Модель реализована в рамках расчетного программного комплекса SigmaFlow, основанного на методах вычислительной гидродинамики. Свободно-конвективное течение описывается уравнениями Навье–Стокса в приближении Буссинеска, а модель подвижного тела реализована с помощью метода погруженных границ. В статье приведены результаты верификации предложенной математической модели на следующих тестовых задачах: нестационарное ламинарное обтекание цилиндра; естественная конвекция в канале между двумя цилиндрами; развитое конвективное течение в замкнутой прямоугольной области с неподвижной пластиной. Представлены результаты численного исследования движения пластины в свободно-конвективном потоке в замкнутом объеме (кювете) с горячей нижней и холодной верхней стенками. В результате расчетов обнаружено влияние подвижной пластины на динамику формирования крупномасштабных ячеек, на локальное распределение плотности теплового потока на нижней стенке и интегральный тепловой поток. В частности, выявлено локальное уменьшение теплового потока под пластиной, увеличение числа крупных вихрей в кювете и разрушение горизонтального градиента температуры, который наблюдается в случае закрепленной пластины. Кроме этого, для закрепленной пластины величина теплового потока под ней зависит от ее положения, а в случае подвижной пластины – от положения и направления ее движения. Качественное сравнение расчетов для двух разных чисел Релея c экспериментальными данными, полученными в Институте механики сплошных сред УрО РАН, показало, что поведение пластины имеет схожие закономерности.