采用模糊部分更新的快速收敛LMS自适应滤波器

J. Sanubari
{"title":"采用模糊部分更新的快速收敛LMS自适应滤波器","authors":"J. Sanubari","doi":"10.1109/TENCON.2003.1273133","DOIUrl":null,"url":null,"abstract":"This paper presents a method to improve the performance of reduced calculation adaptive filters. We use the sequential partial update method to achieve low computation complexity. Furthermore, we include the variable step-size approach to aim last convergence. The variable step size approach is based on a fuzzy method to determine the appropriate step-size on each iteration step. By using the proposed method, the adaptive filter converges faster while pretending the steady state error as the previously proposed reduced calculation adaptive filler. The instantaneous step size is determined from the present square of the error signal to produce sudden changing. Additional rule or conditions are included to prevent the adaptive algorithm to become unstable. Simulation results are presented to compare the performance of the new approach, the fixed step-size LMS algorithm and sequential partial update LMS (S-LMS) algorithms.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"9 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fast convergence LMS adaptive filters employing fuzzy partial updates\",\"authors\":\"J. Sanubari\",\"doi\":\"10.1109/TENCON.2003.1273133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to improve the performance of reduced calculation adaptive filters. We use the sequential partial update method to achieve low computation complexity. Furthermore, we include the variable step-size approach to aim last convergence. The variable step size approach is based on a fuzzy method to determine the appropriate step-size on each iteration step. By using the proposed method, the adaptive filter converges faster while pretending the steady state error as the previously proposed reduced calculation adaptive filler. The instantaneous step size is determined from the present square of the error signal to produce sudden changing. Additional rule or conditions are included to prevent the adaptive algorithm to become unstable. Simulation results are presented to compare the performance of the new approach, the fixed step-size LMS algorithm and sequential partial update LMS (S-LMS) algorithms.\",\"PeriodicalId\":405847,\"journal\":{\"name\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"volume\":\"9 21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2003.1273133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种改进自适应减算滤波器性能的方法。我们采用顺序部分更新的方法来实现较低的计算复杂度。此外,我们还引入了变步长方法来达到最终收敛的目的。变步长方法是基于模糊方法来确定每个迭代步骤的适当步长。采用该方法,自适应滤波器在模拟稳态误差的同时收敛速度更快。瞬时步长由误差信号的当前平方确定,以产生突变。为了防止自适应算法变得不稳定,引入了附加的规则或条件。仿真结果比较了该方法与固定步长LMS算法和顺序部分更新LMS (S-LMS)算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast convergence LMS adaptive filters employing fuzzy partial updates
This paper presents a method to improve the performance of reduced calculation adaptive filters. We use the sequential partial update method to achieve low computation complexity. Furthermore, we include the variable step-size approach to aim last convergence. The variable step size approach is based on a fuzzy method to determine the appropriate step-size on each iteration step. By using the proposed method, the adaptive filter converges faster while pretending the steady state error as the previously proposed reduced calculation adaptive filler. The instantaneous step size is determined from the present square of the error signal to produce sudden changing. Additional rule or conditions are included to prevent the adaptive algorithm to become unstable. Simulation results are presented to compare the performance of the new approach, the fixed step-size LMS algorithm and sequential partial update LMS (S-LMS) algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信