基于图割的变化检测

A. Miron, A. Badii
{"title":"基于图割的变化检测","authors":"A. Miron, A. Badii","doi":"10.1109/IWSSIP.2015.7314229","DOIUrl":null,"url":null,"abstract":"In this paper we propose a moving object detection system based on Graph Cut. Our method relies on motion modelling using an optical flow algorithm and a classical background subtraction module based on Mixture of Gaussians. The main contribution in our approach is the fusion of the two mask models, as well as the particular cost function used by the Graph Cut algorithm. The experiments as performed on CDnet 2014 benchmark showed that our system has very good results in scenarios such as Bad Weather or PTZ, but is less robust in detecting small changes in the scene.","PeriodicalId":249021,"journal":{"name":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Change detection based on graph cuts\",\"authors\":\"A. Miron, A. Badii\",\"doi\":\"10.1109/IWSSIP.2015.7314229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a moving object detection system based on Graph Cut. Our method relies on motion modelling using an optical flow algorithm and a classical background subtraction module based on Mixture of Gaussians. The main contribution in our approach is the fusion of the two mask models, as well as the particular cost function used by the Graph Cut algorithm. The experiments as performed on CDnet 2014 benchmark showed that our system has very good results in scenarios such as Bad Weather or PTZ, but is less robust in detecting small changes in the scene.\",\"PeriodicalId\":249021,\"journal\":{\"name\":\"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSIP.2015.7314229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2015.7314229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种基于图割的运动目标检测系统。我们的方法依赖于使用光流算法和基于混合高斯的经典背景减去模块的运动建模。我们的方法的主要贡献是两个掩模模型的融合,以及图切算法使用的特定成本函数。在CDnet 2014基准上进行的实验表明,我们的系统在恶劣天气或PTZ等场景下具有非常好的效果,但在检测场景中的微小变化时鲁棒性较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Change detection based on graph cuts
In this paper we propose a moving object detection system based on Graph Cut. Our method relies on motion modelling using an optical flow algorithm and a classical background subtraction module based on Mixture of Gaussians. The main contribution in our approach is the fusion of the two mask models, as well as the particular cost function used by the Graph Cut algorithm. The experiments as performed on CDnet 2014 benchmark showed that our system has very good results in scenarios such as Bad Weather or PTZ, but is less robust in detecting small changes in the scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信