在时间O(n log log k)内计算长度为k的最长递增子序列

M. Crochemore, E. Porat
{"title":"在时间O(n log log k)内计算长度为k的最长递增子序列","authors":"M. Crochemore, E. Porat","doi":"10.14236/EWIC/VOCS2008.7","DOIUrl":null,"url":null,"abstract":"We consider the complexity of computing a longest increasing subsequence parameterised by the length of the output. Namely, we show that the maximal length k of an increasing subsequence of a permutation of the set of integers -1, 2,..., n} can be computed in time O(n log log k) in the RAM model, improving the previous 30-year bound of O(n log log k). The optimality of the new bound is an open question.","PeriodicalId":247606,"journal":{"name":"BCS International Academic Conference","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computing a Longest Increasing Subsequence of Length k in Time O(n log log k)\",\"authors\":\"M. Crochemore, E. Porat\",\"doi\":\"10.14236/EWIC/VOCS2008.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the complexity of computing a longest increasing subsequence parameterised by the length of the output. Namely, we show that the maximal length k of an increasing subsequence of a permutation of the set of integers -1, 2,..., n} can be computed in time O(n log log k) in the RAM model, improving the previous 30-year bound of O(n log log k). The optimality of the new bound is an open question.\",\"PeriodicalId\":247606,\"journal\":{\"name\":\"BCS International Academic Conference\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BCS International Academic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14236/EWIC/VOCS2008.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BCS International Academic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14236/EWIC/VOCS2008.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑计算由输出长度参数化的最长递增子序列的复杂性。也就是说,我们证明了整数集- 1,2,…的置换的递增子序列的最大长度k,在RAM模型中,n}可以在O(n log log k)时间内计算,改进了之前的O(n log log k)的30年边界,新边界的最优性是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing a Longest Increasing Subsequence of Length k in Time O(n log log k)
We consider the complexity of computing a longest increasing subsequence parameterised by the length of the output. Namely, we show that the maximal length k of an increasing subsequence of a permutation of the set of integers -1, 2,..., n} can be computed in time O(n log log k) in the RAM model, improving the previous 30-year bound of O(n log log k). The optimality of the new bound is an open question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信