云中的分布式高性能视频处理体系结构

R. Pereira, M. Azambuja, K. Breitman, M. Endler
{"title":"云中的分布式高性能视频处理体系结构","authors":"R. Pereira, M. Azambuja, K. Breitman, M. Endler","doi":"10.1109/CLOUD.2010.73","DOIUrl":null,"url":null,"abstract":"Video processing applications are notably data intense, time, and resource consuming. Upfront infrastructure investment is usually high, specially when dealing with applications where time-to- market is a crucial requirement, e.g., breaking news and journalism. Such infrastructures are often inefficient, because due to demand variations, resources may end up idle a good portion of the time. In this paper, we propose the Split&Merge architecture for high performance video processing, a generalization of the MapReduce paradigm that rationalizes the use of resources by exploring on demand computing. To illustrate the approach, we discuss an implementation of the Split&Merge architecture, that reduces video encoding times to fixed duration, independently of the input size of the video file, by using dynamic resource provisioning in the Cloud.","PeriodicalId":375404,"journal":{"name":"2010 IEEE 3rd International Conference on Cloud Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"An Architecture for Distributed High Performance Video Processing in the Cloud\",\"authors\":\"R. Pereira, M. Azambuja, K. Breitman, M. Endler\",\"doi\":\"10.1109/CLOUD.2010.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video processing applications are notably data intense, time, and resource consuming. Upfront infrastructure investment is usually high, specially when dealing with applications where time-to- market is a crucial requirement, e.g., breaking news and journalism. Such infrastructures are often inefficient, because due to demand variations, resources may end up idle a good portion of the time. In this paper, we propose the Split&Merge architecture for high performance video processing, a generalization of the MapReduce paradigm that rationalizes the use of resources by exploring on demand computing. To illustrate the approach, we discuss an implementation of the Split&Merge architecture, that reduces video encoding times to fixed duration, independently of the input size of the video file, by using dynamic resource provisioning in the Cloud.\",\"PeriodicalId\":375404,\"journal\":{\"name\":\"2010 IEEE 3rd International Conference on Cloud Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 3rd International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2010.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 3rd International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

摘要

视频处理应用程序是一个数据密集、时间和资源消耗非常大的应用程序。前期基础设施投资通常很高,特别是在处理对上市时间有重要要求的应用程序时,例如突发新闻和新闻。这种基础设施通常效率低下,因为由于需求的变化,资源可能会在很长一段时间内处于闲置状态。在本文中,我们提出了用于高性能视频处理的Split&Merge架构,这是MapReduce范式的一种推广,通过探索按需计算来合理化资源使用。为了说明这种方法,我们讨论了Split&Merge架构的实现,通过使用云中的动态资源配置,将视频编码时间减少到固定的持续时间,而不依赖于视频文件的输入大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Architecture for Distributed High Performance Video Processing in the Cloud
Video processing applications are notably data intense, time, and resource consuming. Upfront infrastructure investment is usually high, specially when dealing with applications where time-to- market is a crucial requirement, e.g., breaking news and journalism. Such infrastructures are often inefficient, because due to demand variations, resources may end up idle a good portion of the time. In this paper, we propose the Split&Merge architecture for high performance video processing, a generalization of the MapReduce paradigm that rationalizes the use of resources by exploring on demand computing. To illustrate the approach, we discuss an implementation of the Split&Merge architecture, that reduces video encoding times to fixed duration, independently of the input size of the video file, by using dynamic resource provisioning in the Cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信