{"title":"论文清单","authors":"A. Kashubin","doi":"10.4282/sosj.26.101","DOIUrl":null,"url":null,"abstract":"Paper1 Y. Taketomi, On a Riemannian submanifold whose slice representation has no nonzero fixed points, Hiroshima Math. J., 48 (2018), no. 1, 1–20. Paper2 Y. Taketomi and H. Tamaru, On the nonexistence of left-invariant Ricci solitons — a conjecture and examples, Transf. Groups, 23 (2018), no. 1, 257–270. Paper3 J. T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru, Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces, J. Geom. Phys., 123 (2018), 221–234. Paper4 J. T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru, The solvable models of noncompact real two-plane Grassmannians and some applications, In: Hermitian-Grassmannian Submanifolds, Springer Proc. Math. Stat., 203 (2017), 311–321. Paper5 A. Kubo, K. Onda, Y. Taketomi, H. Tamaru, On the moduli spaces of leftinvariant pseudo-Riemannian metrics on Lie groups, Hiroshima Math. J., 46 (2016), no. 3, 357–374. Paper6 Y. Taketomi, On a Riemannian submanifold whose slice representation has no nonzero fixed point — an introduction, Proceedings of the 19th International Workshop on Hermitian-Grassmannian Submanifolds and 10th RIRCM-OCAMI Joint Differential Geometry Workshop, 225–231, Natl. Inst. Math. Sci. (NIMS), Taejŏn, 2015. Paper7 Y. Taketomi, Examples of hyperpolar actions of the automorphism groups of Lie algebras, Topology Appl. 196 (2015), part B, 904–910.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"List of Papers\",\"authors\":\"A. Kashubin\",\"doi\":\"10.4282/sosj.26.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paper1 Y. Taketomi, On a Riemannian submanifold whose slice representation has no nonzero fixed points, Hiroshima Math. J., 48 (2018), no. 1, 1–20. Paper2 Y. Taketomi and H. Tamaru, On the nonexistence of left-invariant Ricci solitons — a conjecture and examples, Transf. Groups, 23 (2018), no. 1, 257–270. Paper3 J. T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru, Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces, J. Geom. Phys., 123 (2018), 221–234. Paper4 J. T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru, The solvable models of noncompact real two-plane Grassmannians and some applications, In: Hermitian-Grassmannian Submanifolds, Springer Proc. Math. Stat., 203 (2017), 311–321. Paper5 A. Kubo, K. Onda, Y. Taketomi, H. Tamaru, On the moduli spaces of leftinvariant pseudo-Riemannian metrics on Lie groups, Hiroshima Math. J., 46 (2016), no. 3, 357–374. Paper6 Y. Taketomi, On a Riemannian submanifold whose slice representation has no nonzero fixed point — an introduction, Proceedings of the 19th International Workshop on Hermitian-Grassmannian Submanifolds and 10th RIRCM-OCAMI Joint Differential Geometry Workshop, 225–231, Natl. Inst. Math. Sci. (NIMS), Taejŏn, 2015. Paper7 Y. Taketomi, Examples of hyperpolar actions of the automorphism groups of Lie algebras, Topology Appl. 196 (2015), part B, 904–910.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4282/sosj.26.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4282/sosj.26.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
论文1 Y. Taketomi,关于片表示不含非零不动点的riemann子流形,广岛数学。J., 48(2018),第2期。1, 1。论文2 .杨建军,关于左不变Ricci孤子的不存在性——一个猜想和例子,数学学报,23 (2018),no. 1。1, 257 - 270。[3]赵俊泰,韩志勇,久保,李志强,李志强,李志强,一类接触度量流形在Ricci孤子实超曲面上的实现。理论物理。生态学报,123(2018),221-234。[4]赵俊涛,韩志勇,久保,梁志勇,非紧实两平面grassmannian的可解模型及其应用,第4期:Hermitian-Grassmannian子流形,数学,Springer Proc。统计,203(2017),311-321。Paper5。Kubo, K. Onda, Y. Taketomi, H. Tamaru,关于李群上左不变伪黎曼度量的模空间,广岛数学。J., 46(2016),第6期。3, 357 - 374。第6篇论文,杨建军,关于一种非零不动点的riemann子流形——一个介绍,第19届Hermitian-Grassmannian子流形国际研讨会论文集,第10届RIRCM-OCAMI联合微分几何研讨会论文集,225-231,Natl。本月,数学。科学。(NIMS), Taejŏn, 2015。[7]杨建军,李代数自同构群的超极作用,数学学报,2015,第6卷,第4 - 6页。
Paper1 Y. Taketomi, On a Riemannian submanifold whose slice representation has no nonzero fixed points, Hiroshima Math. J., 48 (2018), no. 1, 1–20. Paper2 Y. Taketomi and H. Tamaru, On the nonexistence of left-invariant Ricci solitons — a conjecture and examples, Transf. Groups, 23 (2018), no. 1, 257–270. Paper3 J. T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru, Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces, J. Geom. Phys., 123 (2018), 221–234. Paper4 J. T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru, The solvable models of noncompact real two-plane Grassmannians and some applications, In: Hermitian-Grassmannian Submanifolds, Springer Proc. Math. Stat., 203 (2017), 311–321. Paper5 A. Kubo, K. Onda, Y. Taketomi, H. Tamaru, On the moduli spaces of leftinvariant pseudo-Riemannian metrics on Lie groups, Hiroshima Math. J., 46 (2016), no. 3, 357–374. Paper6 Y. Taketomi, On a Riemannian submanifold whose slice representation has no nonzero fixed point — an introduction, Proceedings of the 19th International Workshop on Hermitian-Grassmannian Submanifolds and 10th RIRCM-OCAMI Joint Differential Geometry Workshop, 225–231, Natl. Inst. Math. Sci. (NIMS), Taejŏn, 2015. Paper7 Y. Taketomi, Examples of hyperpolar actions of the automorphism groups of Lie algebras, Topology Appl. 196 (2015), part B, 904–910.