用主观用户体验数据预测元得分

Jari Takatalo, J. Häkkinen
{"title":"用主观用户体验数据预测元得分","authors":"Jari Takatalo, J. Häkkinen","doi":"10.1145/2658537.2661299","DOIUrl":null,"url":null,"abstract":"The aim of this study is to test how well a subjective user experience (UX) data predicts the Metascore of a digital game. The Metascore calculated by the Metacritic.com is one of the most important indicators of a game's commercial success. Thus, game companies are interested in finding reliable in-house tools to estimate the Metascore before releasing their product. We utilized subjective survey data to test a preliminary regression model for Metascore. The model explained over 50% of the variance between the Metascores. Practically, this means that we can predict a correct Metascore class (e.g., universal acclaim) with 75% accuracy. These promising results provide good grounds for future research on the topic.","PeriodicalId":126882,"journal":{"name":"Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the metascore with a subjective user experience data\",\"authors\":\"Jari Takatalo, J. Häkkinen\",\"doi\":\"10.1145/2658537.2661299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to test how well a subjective user experience (UX) data predicts the Metascore of a digital game. The Metascore calculated by the Metacritic.com is one of the most important indicators of a game's commercial success. Thus, game companies are interested in finding reliable in-house tools to estimate the Metascore before releasing their product. We utilized subjective survey data to test a preliminary regression model for Metascore. The model explained over 50% of the variance between the Metascores. Practically, this means that we can predict a correct Metascore class (e.g., universal acclaim) with 75% accuracy. These promising results provide good grounds for future research on the topic.\",\"PeriodicalId\":126882,\"journal\":{\"name\":\"Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2658537.2661299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2658537.2661299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的目的是测试主观用户体验(UX)数据如何预测数字游戏的Metascore。Metacritic.com计算的Metascore是衡量游戏商业成功的最重要指标之一。因此,游戏公司有兴趣在发行产品前找到可靠的内部工具来评估Metascore。我们利用主观调查数据来检验Metascore的初步回归模型。该模型解释了metascore之间超过50%的差异。实际上,这意味着我们可以以75%的准确率预测正确的Metascore类别(例如,普遍好评)。这些有希望的结果为今后的研究提供了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the metascore with a subjective user experience data
The aim of this study is to test how well a subjective user experience (UX) data predicts the Metascore of a digital game. The Metascore calculated by the Metacritic.com is one of the most important indicators of a game's commercial success. Thus, game companies are interested in finding reliable in-house tools to estimate the Metascore before releasing their product. We utilized subjective survey data to test a preliminary regression model for Metascore. The model explained over 50% of the variance between the Metascores. Practically, this means that we can predict a correct Metascore class (e.g., universal acclaim) with 75% accuracy. These promising results provide good grounds for future research on the topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信