一个完美的有界验证模型

J. Esparza, P. Ganty, R. Majumdar
{"title":"一个完美的有界验证模型","authors":"J. Esparza, P. Ganty, R. Majumdar","doi":"10.1109/LICS.2012.39","DOIUrl":null,"url":null,"abstract":"A class of languages C is perfect if it is closed under Boolean operations and the emptiness problem is decidable. Perfect language classes are the basis for the automata-theoretic approach to model checking: a system is correct if the language generated by the system is disjoint from the language of bad traces. Regular languages are perfect, but because the disjointness problem for context-free languages is undecidable, no class containing them can be perfect. In practice, verification problems for language classes that are not perfect are often under-approximated by checking if the property holds for all behaviors of the system belonging to a fixed subset. A general way to specify a subset of behaviors is by using bounded languages. A class of languages C is perfect modulo bounded languages if it is closed under Boolean operations relative to every bounded language, and if the emptiness problem is decidable relative to every bounded language. We consider finding perfect classes of languages modulo bounded languages. We show that the class of languages accepted by multi-head pushdown automata are perfect modulo bounded languages, and characterize the complexities of decision problems. We also show that bounded languages form a maximal class for which perfection is obtained. We show that computations of several known models of systems, such as recursive multi-threaded programs, recursive counter machines, and communicating finite-state machines can be encoded as multi-head pushdown automata, giving uniform and optimal underapproximation algorithms modulo bounded languages.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"29 18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Perfect Model for Bounded Verification\",\"authors\":\"J. Esparza, P. Ganty, R. Majumdar\",\"doi\":\"10.1109/LICS.2012.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of languages C is perfect if it is closed under Boolean operations and the emptiness problem is decidable. Perfect language classes are the basis for the automata-theoretic approach to model checking: a system is correct if the language generated by the system is disjoint from the language of bad traces. Regular languages are perfect, but because the disjointness problem for context-free languages is undecidable, no class containing them can be perfect. In practice, verification problems for language classes that are not perfect are often under-approximated by checking if the property holds for all behaviors of the system belonging to a fixed subset. A general way to specify a subset of behaviors is by using bounded languages. A class of languages C is perfect modulo bounded languages if it is closed under Boolean operations relative to every bounded language, and if the emptiness problem is decidable relative to every bounded language. We consider finding perfect classes of languages modulo bounded languages. We show that the class of languages accepted by multi-head pushdown automata are perfect modulo bounded languages, and characterize the complexities of decision problems. We also show that bounded languages form a maximal class for which perfection is obtained. We show that computations of several known models of systems, such as recursive multi-threaded programs, recursive counter machines, and communicating finite-state machines can be encoded as multi-head pushdown automata, giving uniform and optimal underapproximation algorithms modulo bounded languages.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"29 18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

一类语言C是完美的,如果它在布尔运算下是封闭的,并且空性问题是可决定的。完美的语言类是模型检查的自动机理论方法的基础:如果系统生成的语言与不良痕迹的语言不相交,则系统是正确的。正则语言是完美的,但是由于上下文无关语言的不连接问题是不可判定的,所以没有包含它们的类是完美的。在实践中,对于不完美的语言类的验证问题,通常通过检查属性是否适用于属于固定子集的系统的所有行为来低估。指定行为子集的一般方法是使用有界语言。一类语言C是完全模有界语言,如果它在布尔运算下相对于每一个有界语言是封闭的,并且如果空性问题相对于每一个有界语言是可判定的。我们考虑寻找模有界语言的完美类。我们证明了多头下推自动机所接受的一类语言是完全模有界语言,并表征了决策问题的复杂性。我们还证明了有界语言形成了一个极大类,它的完备性是可以得到的。我们证明了几种已知系统模型的计算,如递归多线程程序,递归计数器机和通信有限状态机,可以编码为多头下推自动机,给出了模有界语言的一致和最优欠逼近算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Perfect Model for Bounded Verification
A class of languages C is perfect if it is closed under Boolean operations and the emptiness problem is decidable. Perfect language classes are the basis for the automata-theoretic approach to model checking: a system is correct if the language generated by the system is disjoint from the language of bad traces. Regular languages are perfect, but because the disjointness problem for context-free languages is undecidable, no class containing them can be perfect. In practice, verification problems for language classes that are not perfect are often under-approximated by checking if the property holds for all behaviors of the system belonging to a fixed subset. A general way to specify a subset of behaviors is by using bounded languages. A class of languages C is perfect modulo bounded languages if it is closed under Boolean operations relative to every bounded language, and if the emptiness problem is decidable relative to every bounded language. We consider finding perfect classes of languages modulo bounded languages. We show that the class of languages accepted by multi-head pushdown automata are perfect modulo bounded languages, and characterize the complexities of decision problems. We also show that bounded languages form a maximal class for which perfection is obtained. We show that computations of several known models of systems, such as recursive multi-threaded programs, recursive counter machines, and communicating finite-state machines can be encoded as multi-head pushdown automata, giving uniform and optimal underapproximation algorithms modulo bounded languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信