基于缺失和退化数据的运动估计的最优形状

Manuel Marques, J. Costeira
{"title":"基于缺失和退化数据的运动估计的最优形状","authors":"Manuel Marques, J. Costeira","doi":"10.1109/WMVC.2008.4544046","DOIUrl":null,"url":null,"abstract":"Reconstructing a 3D scene from a moving camera is one of the most important issues in the field of computer vision. In this scenario, not all points are known in all images (e.g. due to occlusion), thus generating missing data. The state of the art handles the missing points in this context by enforcing rank constraints on the point track matrix. However, quite frequently, close up views tend to capture planar surfaces producing degenerate data. If one single frame is degenerate, the whole sequence will produce high errors on the shape reconstruction, even though the observation matrix verifies the rank 4 constraint. In this paper, we propose to solve the structure from motion problem with degenerate data, introducing a new factorization algorithm that imposes the full scaled orthographic model in one single optimization procedure. By imposing all model constraints, a unique (correct) 3D shape is estimated regardless of the data degeneracies. Experiments show that remarkably good reconstructions are obtained with an approximate models such as orthography.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Optimal shape from motion estimation with missing and degenerate data\",\"authors\":\"Manuel Marques, J. Costeira\",\"doi\":\"10.1109/WMVC.2008.4544046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstructing a 3D scene from a moving camera is one of the most important issues in the field of computer vision. In this scenario, not all points are known in all images (e.g. due to occlusion), thus generating missing data. The state of the art handles the missing points in this context by enforcing rank constraints on the point track matrix. However, quite frequently, close up views tend to capture planar surfaces producing degenerate data. If one single frame is degenerate, the whole sequence will produce high errors on the shape reconstruction, even though the observation matrix verifies the rank 4 constraint. In this paper, we propose to solve the structure from motion problem with degenerate data, introducing a new factorization algorithm that imposes the full scaled orthographic model in one single optimization procedure. By imposing all model constraints, a unique (correct) 3D shape is estimated regardless of the data degeneracies. Experiments show that remarkably good reconstructions are obtained with an approximate models such as orthography.\",\"PeriodicalId\":150666,\"journal\":{\"name\":\"2008 IEEE Workshop on Motion and video Computing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Motion and video Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2008.4544046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

从移动摄像机中重建三维场景是计算机视觉领域最重要的问题之一。在这种情况下,并非所有图像中的所有点都是已知的(例如由于遮挡),从而产生丢失的数据。目前的技术水平是通过对点轨迹矩阵施加秩约束来处理这种情况下的缺失点。然而,很常见的是,近距离视图倾向于捕获产生退化数据的平面。如果单帧退化,即使观测矩阵验证了4阶约束,整个序列的形状重建误差也很大。在本文中,我们提出用退化的数据来解决由运动而来的结构问题,引入了一种新的因式分解算法,该算法在一个单一的优化过程中施加了全比例的正射影模型。通过施加所有的模型约束,一个唯一的(正确的)三维形状被估计不管数据退化。实验表明,采用近似的模型(如正字法)可以获得非常好的重建效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal shape from motion estimation with missing and degenerate data
Reconstructing a 3D scene from a moving camera is one of the most important issues in the field of computer vision. In this scenario, not all points are known in all images (e.g. due to occlusion), thus generating missing data. The state of the art handles the missing points in this context by enforcing rank constraints on the point track matrix. However, quite frequently, close up views tend to capture planar surfaces producing degenerate data. If one single frame is degenerate, the whole sequence will produce high errors on the shape reconstruction, even though the observation matrix verifies the rank 4 constraint. In this paper, we propose to solve the structure from motion problem with degenerate data, introducing a new factorization algorithm that imposes the full scaled orthographic model in one single optimization procedure. By imposing all model constraints, a unique (correct) 3D shape is estimated regardless of the data degeneracies. Experiments show that remarkably good reconstructions are obtained with an approximate models such as orthography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信