李维分布的核心

G. Dall’Ara, Samuele Mongodi
{"title":"李维分布的核心","authors":"G. Dall’Ara, Samuele Mongodi","doi":"10.5802/jep.239","DOIUrl":null,"url":null,"abstract":"We introduce a new geometrical invariant of CR manifolds of hypersurface type, which we dub the\"Levi core\"of the manifold. When the manifold is the boundary of a smooth bounded pseudoconvex domain, we show how the Levi core is related to two other important global invariants in several complex variables: the Diederich--Forn{\\ae}ss index and the D'Angelo class (namely the set of D'Angelo forms of the boundary). We also show that the Levi core is trivial whenever the domain is of finite-type in the sense of D'Angelo, or the set of weakly pseudoconvex points is contained in a totally real submanifold, while it is nontrivial if the boundary contains a local maximum set. As corollaries to the theory developed here, we prove that for any smooth bounded pseudoconvex domain with trivial Levi core the Diederich--Forn{\\ae}ss index is one and the $\\overline{\\partial}$-Neumann problem is exactly regular (via a result of Kohn and its generalization by Harrington). Our work builds on and expands recent results of Liu and Adachi--Yum.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The core of the Levi distribution\",\"authors\":\"G. Dall’Ara, Samuele Mongodi\",\"doi\":\"10.5802/jep.239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new geometrical invariant of CR manifolds of hypersurface type, which we dub the\\\"Levi core\\\"of the manifold. When the manifold is the boundary of a smooth bounded pseudoconvex domain, we show how the Levi core is related to two other important global invariants in several complex variables: the Diederich--Forn{\\\\ae}ss index and the D'Angelo class (namely the set of D'Angelo forms of the boundary). We also show that the Levi core is trivial whenever the domain is of finite-type in the sense of D'Angelo, or the set of weakly pseudoconvex points is contained in a totally real submanifold, while it is nontrivial if the boundary contains a local maximum set. As corollaries to the theory developed here, we prove that for any smooth bounded pseudoconvex domain with trivial Levi core the Diederich--Forn{\\\\ae}ss index is one and the $\\\\overline{\\\\partial}$-Neumann problem is exactly regular (via a result of Kohn and its generalization by Harrington). Our work builds on and expands recent results of Liu and Adachi--Yum.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

引入了超曲面型CR流形的一个新的几何不变量,称之为流形的“Levi核”。当流形是光滑有界伪凸域的边界时,我们展示了Levi核如何与几个复杂变量中的另外两个重要的全局不变量相关:Diederich—form{\ae} s指标和D'Angelo类(即边界的D'Angelo形式的集合)。我们还证明了Levi核在D'Angelo意义上的有限型定义域上是平凡的,或者弱伪凸点集合包含在全实子流形上时是平凡的,而当边界包含局部极大集时,Levi核是非平凡的。作为这里发展的理论的推论,我们证明了对于任何光滑有界伪凸区域,具有平凡的Levi核,Diederich- form{\ae} s指标是1,$\overline{\partial}$ -Neumann问题是完全正则的(通过Kohn的结果及其由Harrington的推广)。我们的工作建立并扩展了刘和安达百胜最近的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The core of the Levi distribution
We introduce a new geometrical invariant of CR manifolds of hypersurface type, which we dub the"Levi core"of the manifold. When the manifold is the boundary of a smooth bounded pseudoconvex domain, we show how the Levi core is related to two other important global invariants in several complex variables: the Diederich--Forn{\ae}ss index and the D'Angelo class (namely the set of D'Angelo forms of the boundary). We also show that the Levi core is trivial whenever the domain is of finite-type in the sense of D'Angelo, or the set of weakly pseudoconvex points is contained in a totally real submanifold, while it is nontrivial if the boundary contains a local maximum set. As corollaries to the theory developed here, we prove that for any smooth bounded pseudoconvex domain with trivial Levi core the Diederich--Forn{\ae}ss index is one and the $\overline{\partial}$-Neumann problem is exactly regular (via a result of Kohn and its generalization by Harrington). Our work builds on and expands recent results of Liu and Adachi--Yum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信