基于知识的高非线性电路设计自动化仿真校正

M. Zakaria, M. Madbouly, M. El-Nozahi, M. Dessouky
{"title":"基于知识的高非线性电路设计自动化仿真校正","authors":"M. Zakaria, M. Madbouly, M. El-Nozahi, M. Dessouky","doi":"10.1109/ICM.2003.238303","DOIUrl":null,"url":null,"abstract":"The design of highly non-linear circuits is a challenging and time-consuming task both for designers and design-automation tools. This paper presents a method for automated design of such circuits. By combining equations and heuristics with simulation-corrections, it allows to achieve the accuracy of optimization-based sizing with the speed of knowledge-based sizing one. The correction scheme is also used to reduce the number of independent variables. Sizing, speed and accuracy allow it to be used in the design and technology migration of digital libraries, full-custom cells as well as dynamically during timing analysis to compensate long critical paths. Applications are also appealing for highly non-linear analog functions. A prototype tool has been implemented in MATLAB.","PeriodicalId":180690,"journal":{"name":"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge-based design automation of highly non-linear circuits using simulation correction\",\"authors\":\"M. Zakaria, M. Madbouly, M. El-Nozahi, M. Dessouky\",\"doi\":\"10.1109/ICM.2003.238303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of highly non-linear circuits is a challenging and time-consuming task both for designers and design-automation tools. This paper presents a method for automated design of such circuits. By combining equations and heuristics with simulation-corrections, it allows to achieve the accuracy of optimization-based sizing with the speed of knowledge-based sizing one. The correction scheme is also used to reduce the number of independent variables. Sizing, speed and accuracy allow it to be used in the design and technology migration of digital libraries, full-custom cells as well as dynamically during timing analysis to compensate long critical paths. Applications are also appealing for highly non-linear analog functions. A prototype tool has been implemented in MATLAB.\",\"PeriodicalId\":180690,\"journal\":{\"name\":\"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2003.238303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2003.238303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于设计人员和设计自动化工具来说,高度非线性电路的设计是一项具有挑战性和耗时的任务。本文提出了一种自动设计这种电路的方法。通过将方程和启发式方法与仿真修正相结合,可以实现基于优化的分级精度和基于知识的分级速度。修正方案也用于减少自变量的数量。尺寸,速度和准确性使其能够用于数字图书馆,全定制单元的设计和技术迁移,以及在定时分析期间动态地补偿长关键路径。应用程序也要求高度非线性的模拟函数。在MATLAB中实现了一个原型工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-based design automation of highly non-linear circuits using simulation correction
The design of highly non-linear circuits is a challenging and time-consuming task both for designers and design-automation tools. This paper presents a method for automated design of such circuits. By combining equations and heuristics with simulation-corrections, it allows to achieve the accuracy of optimization-based sizing with the speed of knowledge-based sizing one. The correction scheme is also used to reduce the number of independent variables. Sizing, speed and accuracy allow it to be used in the design and technology migration of digital libraries, full-custom cells as well as dynamically during timing analysis to compensate long critical paths. Applications are also appealing for highly non-linear analog functions. A prototype tool has been implemented in MATLAB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信