使用自然语言处理学习共同基金分类

Dimitrios Vamvourellis, M. Tóth, Dhruv Desai, D. Mehta, S. Pasquali
{"title":"使用自然语言处理学习共同基金分类","authors":"Dimitrios Vamvourellis, M. Tóth, Dhruv Desai, D. Mehta, S. Pasquali","doi":"10.1145/3533271.3561748","DOIUrl":null,"url":null,"abstract":"Categorization of mutual funds or Exchange-Traded-funds (ETFs) have long served the financial analysts to perform peer analysis for various purposes starting from competitor analysis, to quantifying portfolio diversification. The categorization methodology usually relies on fund composition data in the structured format extracted from the Form N-1A. Here, we initiate a study to learn the categorization system directly from the unstructured data as depicted in the forms using natural language processing (NLP). Positing as a multi-class classification problem with the input data being only the investment strategy description as reported in the form and the target variable being the Lipper Global categories, and using various NLP models, we show that the categorization system can indeed be learned with high accuracy. We discuss implications and applications of our findings as well as limitations of existing pre-trained architectures in applying them to learn fund categorization.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning Mutual Fund Categorization using Natural Language Processing\",\"authors\":\"Dimitrios Vamvourellis, M. Tóth, Dhruv Desai, D. Mehta, S. Pasquali\",\"doi\":\"10.1145/3533271.3561748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Categorization of mutual funds or Exchange-Traded-funds (ETFs) have long served the financial analysts to perform peer analysis for various purposes starting from competitor analysis, to quantifying portfolio diversification. The categorization methodology usually relies on fund composition data in the structured format extracted from the Form N-1A. Here, we initiate a study to learn the categorization system directly from the unstructured data as depicted in the forms using natural language processing (NLP). Positing as a multi-class classification problem with the input data being only the investment strategy description as reported in the form and the target variable being the Lipper Global categories, and using various NLP models, we show that the categorization system can indeed be learned with high accuracy. We discuss implications and applications of our findings as well as limitations of existing pre-trained architectures in applying them to learn fund categorization.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

长期以来,共同基金或交易所交易基金(etf)的分类为金融分析师提供了从竞争对手分析到量化投资组合多样化等各种目的的同行分析。分类方法通常依赖于从N-1A表格中提取的结构化基金组成数据。在这里,我们启动了一项研究,使用自然语言处理(NLP)直接从表格中描述的非结构化数据中学习分类系统。假设一个多类分类问题,输入数据仅为表格中报告的投资策略描述,目标变量为Lipper Global类别,并使用各种NLP模型,我们表明分类系统确实可以以高精度学习。我们讨论了我们的发现的意义和应用,以及现有的预训练架构在应用它们来学习基金分类方面的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Mutual Fund Categorization using Natural Language Processing
Categorization of mutual funds or Exchange-Traded-funds (ETFs) have long served the financial analysts to perform peer analysis for various purposes starting from competitor analysis, to quantifying portfolio diversification. The categorization methodology usually relies on fund composition data in the structured format extracted from the Form N-1A. Here, we initiate a study to learn the categorization system directly from the unstructured data as depicted in the forms using natural language processing (NLP). Positing as a multi-class classification problem with the input data being only the investment strategy description as reported in the form and the target variable being the Lipper Global categories, and using various NLP models, we show that the categorization system can indeed be learned with high accuracy. We discuss implications and applications of our findings as well as limitations of existing pre-trained architectures in applying them to learn fund categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信