{"title":"用离散余弦变换研究燃气轮机用单晶镍基高温合金位错密度与蠕变应变率的关系","authors":"H. Hiraguchi","doi":"10.1115/gt2021-58801","DOIUrl":null,"url":null,"abstract":"\n The discrete cosine transform (DCT) is known to be able to express the relation curve between creep strain and time, or the relation curve between creep strain rate and time very well. Moreover, recently it has been found out that the DCT can draw electron density distribution maps of crystals. In addition, the DCT always passes through all the points measured at an equal interval in any continuous curves and its interpolated values between adjacent points are very reasonable. Furthermore, a new prediction method for long term creep curves from short term creep data by using the DCT was reported at TurboExpo2020. Up to the present, the strength of single crystal Nickel based superalloys for gas turbines at elevated temperatures has been advanced by controlling the interface dislocation density and the lattice misfit at the γ/γ’ interfaces. For this reason, it has to be understood how to evaluate a relationship between interface dislocation density and creep strain rate to develop more advanced single crystal Nickel based superalloys. Therefore, in this research it was studied how to evaluate the relationship between interface dislocation density and creep strain rate of a single crystal Nickel based superalloy for gas turbines by using the DCT. As a result, useful properties on the effective stress have been obtained from the coefficients of the DCT.","PeriodicalId":143309,"journal":{"name":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Relationship Between Dislocation Density and Creep Strain Rate of Single Crystal Ni Based Superalloy for Gas Turbines Using the Discrete Cosine Transform\",\"authors\":\"H. Hiraguchi\",\"doi\":\"10.1115/gt2021-58801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The discrete cosine transform (DCT) is known to be able to express the relation curve between creep strain and time, or the relation curve between creep strain rate and time very well. Moreover, recently it has been found out that the DCT can draw electron density distribution maps of crystals. In addition, the DCT always passes through all the points measured at an equal interval in any continuous curves and its interpolated values between adjacent points are very reasonable. Furthermore, a new prediction method for long term creep curves from short term creep data by using the DCT was reported at TurboExpo2020. Up to the present, the strength of single crystal Nickel based superalloys for gas turbines at elevated temperatures has been advanced by controlling the interface dislocation density and the lattice misfit at the γ/γ’ interfaces. For this reason, it has to be understood how to evaluate a relationship between interface dislocation density and creep strain rate to develop more advanced single crystal Nickel based superalloys. Therefore, in this research it was studied how to evaluate the relationship between interface dislocation density and creep strain rate of a single crystal Nickel based superalloy for gas turbines by using the DCT. As a result, useful properties on the effective stress have been obtained from the coefficients of the DCT.\",\"PeriodicalId\":143309,\"journal\":{\"name\":\"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-58801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Relationship Between Dislocation Density and Creep Strain Rate of Single Crystal Ni Based Superalloy for Gas Turbines Using the Discrete Cosine Transform
The discrete cosine transform (DCT) is known to be able to express the relation curve between creep strain and time, or the relation curve between creep strain rate and time very well. Moreover, recently it has been found out that the DCT can draw electron density distribution maps of crystals. In addition, the DCT always passes through all the points measured at an equal interval in any continuous curves and its interpolated values between adjacent points are very reasonable. Furthermore, a new prediction method for long term creep curves from short term creep data by using the DCT was reported at TurboExpo2020. Up to the present, the strength of single crystal Nickel based superalloys for gas turbines at elevated temperatures has been advanced by controlling the interface dislocation density and the lattice misfit at the γ/γ’ interfaces. For this reason, it has to be understood how to evaluate a relationship between interface dislocation density and creep strain rate to develop more advanced single crystal Nickel based superalloys. Therefore, in this research it was studied how to evaluate the relationship between interface dislocation density and creep strain rate of a single crystal Nickel based superalloy for gas turbines by using the DCT. As a result, useful properties on the effective stress have been obtained from the coefficients of the DCT.