Yun Zhang, Wenxiang Chen, Han Liu, Jinhua Liu, Hui Du
{"title":"基于Sad和改进的人口普查转换的高效双目立体匹配","authors":"Yun Zhang, Wenxiang Chen, Han Liu, Jinhua Liu, Hui Du","doi":"10.1109/ICMLC48188.2019.8949324","DOIUrl":null,"url":null,"abstract":"Binocular stereo matching aims to obtain disparities from two very close views. Existing stereo matching methods may cause false matching when there are much image noise and disparity discontinuities. This paper proposes a novel binocular stereo matching algorithm based on SAD and improved Census transformation. We first perform improved Census transformation, and then we get the matching costs by combining SAD and improved Census transformation. Finally we cluster the matching costs and calculate the disparities. To generate better disparities, we further propose the improved bilateral and selective filters to enhance the accuracy of disparities. Experimental results show that our binocular stereo matching can produce more accurate and complete disparities, and it works well in complex scenes with irregular shapes and more objects, thus it has wide applications in stereoscopic image processing.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Binocular Stereo Matching Based on Sad and Improved Census Transformation\",\"authors\":\"Yun Zhang, Wenxiang Chen, Han Liu, Jinhua Liu, Hui Du\",\"doi\":\"10.1109/ICMLC48188.2019.8949324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binocular stereo matching aims to obtain disparities from two very close views. Existing stereo matching methods may cause false matching when there are much image noise and disparity discontinuities. This paper proposes a novel binocular stereo matching algorithm based on SAD and improved Census transformation. We first perform improved Census transformation, and then we get the matching costs by combining SAD and improved Census transformation. Finally we cluster the matching costs and calculate the disparities. To generate better disparities, we further propose the improved bilateral and selective filters to enhance the accuracy of disparities. Experimental results show that our binocular stereo matching can produce more accurate and complete disparities, and it works well in complex scenes with irregular shapes and more objects, thus it has wide applications in stereoscopic image processing.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Binocular Stereo Matching Based on Sad and Improved Census Transformation
Binocular stereo matching aims to obtain disparities from two very close views. Existing stereo matching methods may cause false matching when there are much image noise and disparity discontinuities. This paper proposes a novel binocular stereo matching algorithm based on SAD and improved Census transformation. We first perform improved Census transformation, and then we get the matching costs by combining SAD and improved Census transformation. Finally we cluster the matching costs and calculate the disparities. To generate better disparities, we further propose the improved bilateral and selective filters to enhance the accuracy of disparities. Experimental results show that our binocular stereo matching can produce more accurate and complete disparities, and it works well in complex scenes with irregular shapes and more objects, thus it has wide applications in stereoscopic image processing.