基于RGB-D的多模态卷积神经网络航天器识别

Nouar Aldahoul, H. A. Karim, Mhd Adel Momo
{"title":"基于RGB-D的多模态卷积神经网络航天器识别","authors":"Nouar Aldahoul, H. A. Karim, Mhd Adel Momo","doi":"10.1109/ICIPC53495.2021.9620192","DOIUrl":null,"url":null,"abstract":"Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RGB-D Based Multimodal Convolutional Neural Networks for Spacecraft Recognition\",\"authors\":\"Nouar Aldahoul, H. A. Karim, Mhd Adel Momo\",\"doi\":\"10.1109/ICIPC53495.2021.9620192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).\",\"PeriodicalId\":246438,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing Challenges (ICIPC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing Challenges (ICIPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPC53495.2021.9620192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPC53495.2021.9620192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

航天器识别是空间态势感知(SSA)的重要组成部分,特别是在主动碎片清除、在轨服务和卫星编队等应用中。实际空间图像识别的复杂性是由于遥感条件的多样性造成的,包括背景噪声、低信噪比、不同轨道场景和高对比度。本文解决了上述问题,提出了多模态卷积神经网络(cnn)用于航天器的检测和分类。提出的解决方案包括两个模型:1)将预训练好的ResNet50 CNN与支持向量机(SVM)分类器连接,对RGB图像进行分类。2)端到端深度图像分类CNN。在一个新的SPARK数据集上进行的实验是在真实的空间模拟环境下生成的,该数据集具有150k的RGB图像和150k的深度图像,包含11个类别。结果表明,所提出的解决方案在准确率(89%)、F1分数(87%)和性能度量(1.8)方面表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGB-D Based Multimodal Convolutional Neural Networks for Spacecraft Recognition
Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信