安全广播:保密速率区域

Ghadamali Bagherikaram, A. Motahari, A. Khandani
{"title":"安全广播:保密速率区域","authors":"Ghadamali Bagherikaram, A. Motahari, A. Khandani","doi":"10.1109/ALLERTON.2008.4797644","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-tapper also receives the transmitted signal. This model is motivated by wireless communications, where individual secure messages are broadcast over open media and can be received by any illegitimate receiver. The secrecy level is measured by equivocation rate at the eavesdropper. We first study the general (non-degraded) broadcast channel with confidential messages. We present an inner bound on the secrecy capacity region for this model. The inner bound coding scheme is based on a combination of random binning and the Gelfand-Pinsker bining. This scheme matches the Marton's inner bound on the broadcast channel without confidentiality constraint. We further study the situation where the channels are degraded. For the degraded broadcast channel with confidential messages, we present the secrecy capacity region. Our achievable coding scheme is based on Cover's superposition scheme and random binning. We refer to this scheme as secret superposition scheme. In this scheme, we show that randomization in the first layer increases the secrecy rate of the second layer. This capacity region matches the capacity region of the degraded broadcast channel without security constraint. It also matches the secrecy capacity for the conventional wire-tap channel. Our converse proof is based on a combination of the converse proof of the conventional degraded broadcast channel and Csiszar lemma.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Secure broadcasting : The secrecy rate region\",\"authors\":\"Ghadamali Bagherikaram, A. Motahari, A. Khandani\",\"doi\":\"10.1109/ALLERTON.2008.4797644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-tapper also receives the transmitted signal. This model is motivated by wireless communications, where individual secure messages are broadcast over open media and can be received by any illegitimate receiver. The secrecy level is measured by equivocation rate at the eavesdropper. We first study the general (non-degraded) broadcast channel with confidential messages. We present an inner bound on the secrecy capacity region for this model. The inner bound coding scheme is based on a combination of random binning and the Gelfand-Pinsker bining. This scheme matches the Marton's inner bound on the broadcast channel without confidentiality constraint. We further study the situation where the channels are degraded. For the degraded broadcast channel with confidential messages, we present the secrecy capacity region. Our achievable coding scheme is based on Cover's superposition scheme and random binning. We refer to this scheme as secret superposition scheme. In this scheme, we show that randomization in the first layer increases the secrecy rate of the second layer. This capacity region matches the capacity region of the degraded broadcast channel without security constraint. It also matches the secrecy capacity for the conventional wire-tap channel. Our converse proof is based on a combination of the converse proof of the conventional degraded broadcast channel and Csiszar lemma.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在本文中,我们考虑这样一种场景:源节点希望向两个各自的接收者广播两个机密消息,而窃听者也接收发送的信号。该模型是由无线通信驱动的,在无线通信中,个人安全消息通过开放媒体广播,可以被任何非法接收者接收。保密级别由窃听者的含糊其辞率来衡量。我们首先研究了包含机密信息的一般(非降级)广播信道。给出了该模型的保密容量区域的一个内界。内界编码方案基于随机分组和Gelfand-Pinsker分组的结合。该方案匹配广播信道上的马尔顿内界,没有保密约束。我们进一步研究了信道退化的情况。对于含有机密消息的降级广播信道,我们提出了保密容量区域。我们实现的编码方案是基于Cover的叠加方案和随机分组。我们把这种方案称为秘密叠加方案。在这个方案中,我们证明了第一层的随机化提高了第二层的保密率。该容量区域与无安全约束的降级广播信道容量区域匹配。它也与传统的有线窃听频道的保密能力相匹配。我们的反向证明是基于传统退化广播信道的反向证明和cisszar引理的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure broadcasting : The secrecy rate region
In this paper, we consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-tapper also receives the transmitted signal. This model is motivated by wireless communications, where individual secure messages are broadcast over open media and can be received by any illegitimate receiver. The secrecy level is measured by equivocation rate at the eavesdropper. We first study the general (non-degraded) broadcast channel with confidential messages. We present an inner bound on the secrecy capacity region for this model. The inner bound coding scheme is based on a combination of random binning and the Gelfand-Pinsker bining. This scheme matches the Marton's inner bound on the broadcast channel without confidentiality constraint. We further study the situation where the channels are degraded. For the degraded broadcast channel with confidential messages, we present the secrecy capacity region. Our achievable coding scheme is based on Cover's superposition scheme and random binning. We refer to this scheme as secret superposition scheme. In this scheme, we show that randomization in the first layer increases the secrecy rate of the second layer. This capacity region matches the capacity region of the degraded broadcast channel without security constraint. It also matches the secrecy capacity for the conventional wire-tap channel. Our converse proof is based on a combination of the converse proof of the conventional degraded broadcast channel and Csiszar lemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信