Christopher Kermorvant, Anne-Laure Bianne-Bernard, Patrick Marty, F. Menasri
{"title":"从孤立的手写字符到字段识别:在杯和唇之间有许多失误","authors":"Christopher Kermorvant, Anne-Laure Bianne-Bernard, Patrick Marty, F. Menasri","doi":"10.1109/ICDAR.2009.91","DOIUrl":null,"url":null,"abstract":"Recognition of handwritten characters has been a popular task for the evaluation of classification algorithms for many years. Looking at the latest results on databases such as USPS or MNIST, one could think that character recognition is a solved problem. In this paper, we claim that this is not the case for two reasons : first because the classical databases for digit recognition are realistic but too simple and second because digit recognition is not a real-world task but only a part of it. In this paper, we contribute to a better understanding of these two aspects with new results. In a first part, we compare three state-of-the-art recognizers on a digit recognition task extracted from a real world application and show that the error rates on this database can not be extrapolated from MNIST. Then, in a second part, we present and evaluate a system designed for an industrial application based on character recognition : document identification with floating field recognition.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"From Isolated Handwritten Characters to Fields Recognition: There's Many a Slip Twixt Cup and Lip\",\"authors\":\"Christopher Kermorvant, Anne-Laure Bianne-Bernard, Patrick Marty, F. Menasri\",\"doi\":\"10.1109/ICDAR.2009.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of handwritten characters has been a popular task for the evaluation of classification algorithms for many years. Looking at the latest results on databases such as USPS or MNIST, one could think that character recognition is a solved problem. In this paper, we claim that this is not the case for two reasons : first because the classical databases for digit recognition are realistic but too simple and second because digit recognition is not a real-world task but only a part of it. In this paper, we contribute to a better understanding of these two aspects with new results. In a first part, we compare three state-of-the-art recognizers on a digit recognition task extracted from a real world application and show that the error rates on this database can not be extrapolated from MNIST. Then, in a second part, we present and evaluate a system designed for an industrial application based on character recognition : document identification with floating field recognition.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Isolated Handwritten Characters to Fields Recognition: There's Many a Slip Twixt Cup and Lip
Recognition of handwritten characters has been a popular task for the evaluation of classification algorithms for many years. Looking at the latest results on databases such as USPS or MNIST, one could think that character recognition is a solved problem. In this paper, we claim that this is not the case for two reasons : first because the classical databases for digit recognition are realistic but too simple and second because digit recognition is not a real-world task but only a part of it. In this paper, we contribute to a better understanding of these two aspects with new results. In a first part, we compare three state-of-the-art recognizers on a digit recognition task extracted from a real world application and show that the error rates on this database can not be extrapolated from MNIST. Then, in a second part, we present and evaluate a system designed for an industrial application based on character recognition : document identification with floating field recognition.