基于残差构建块卷积神经网络的人群计数

Yaokai Xue, Jing Li
{"title":"基于残差构建块卷积神经网络的人群计数","authors":"Yaokai Xue, Jing Li","doi":"10.1109/ISASS.2019.8757730","DOIUrl":null,"url":null,"abstract":"We present a new method called residual building block convolutional neural network (RBB-CNN) for generating high-quality density maps and count estimation by applying stacked residual building blocks. The specific deploy of convolution layers in building blocks are inspired by the work of VGG16. The RBB-CNN is an easy-trained end-to-end model and allows arbitrary-size input because of its pure convolutional structure. To verify the validation of the residual building block, an ablation on ShanghaiTech Part-A is implemented. Meanwhile, we demonstrate the performance of RBB-CNN on three crowd counting datasets, i.e., ShanghaiTech, UCSD and MALL. With a wide range from dense to sparse density, our model achieves the state-of-the-art performance on all of the above datasets.","PeriodicalId":359959,"journal":{"name":"2019 3rd International Symposium on Autonomous Systems (ISAS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crowd Counting Via Residual Building Block Convolutional Neural Network\",\"authors\":\"Yaokai Xue, Jing Li\",\"doi\":\"10.1109/ISASS.2019.8757730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method called residual building block convolutional neural network (RBB-CNN) for generating high-quality density maps and count estimation by applying stacked residual building blocks. The specific deploy of convolution layers in building blocks are inspired by the work of VGG16. The RBB-CNN is an easy-trained end-to-end model and allows arbitrary-size input because of its pure convolutional structure. To verify the validation of the residual building block, an ablation on ShanghaiTech Part-A is implemented. Meanwhile, we demonstrate the performance of RBB-CNN on three crowd counting datasets, i.e., ShanghaiTech, UCSD and MALL. With a wide range from dense to sparse density, our model achieves the state-of-the-art performance on all of the above datasets.\",\"PeriodicalId\":359959,\"journal\":{\"name\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISASS.2019.8757730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISASS.2019.8757730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的方法,称为残差构建块卷积神经网络(RBB-CNN),用于通过堆叠残差构建块生成高质量的密度图和计数估计。卷积层在构建块中的具体部署受到VGG16工作的启发。RBB-CNN是一种易于训练的端到端模型,由于其纯卷积结构,它允许任意大小的输入。为了验证剩余构建块的有效性,在上海科技a部分上进行了烧蚀。同时,我们在ShanghaiTech, UCSD和MALL三个人群统计数据集上展示了RBB-CNN的性能。从密集到稀疏的密度范围很广,我们的模型在上述所有数据集上都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crowd Counting Via Residual Building Block Convolutional Neural Network
We present a new method called residual building block convolutional neural network (RBB-CNN) for generating high-quality density maps and count estimation by applying stacked residual building blocks. The specific deploy of convolution layers in building blocks are inspired by the work of VGG16. The RBB-CNN is an easy-trained end-to-end model and allows arbitrary-size input because of its pure convolutional structure. To verify the validation of the residual building block, an ablation on ShanghaiTech Part-A is implemented. Meanwhile, we demonstrate the performance of RBB-CNN on three crowd counting datasets, i.e., ShanghaiTech, UCSD and MALL. With a wide range from dense to sparse density, our model achieves the state-of-the-art performance on all of the above datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信