基于内容的局部金字塔图像检索方法的比较研究

Lin Feng, Anand Bilas Ray
{"title":"基于内容的局部金字塔图像检索方法的比较研究","authors":"Lin Feng, Anand Bilas Ray","doi":"10.1109/IVMSPW.2011.5970363","DOIUrl":null,"url":null,"abstract":"The local-pyramid approach for image representation and feature extraction is studied for the Content-Based Image Retrieval (CBIR). Lazebnik's pyramid matching kernels and the K-means clustering is used. The SIFT descriptor is deployed for feature extraction from the images, resulting in an efficient image representation scheme and reduction of the computational complexity. Histogram intersection is used to compute the similarity between the query image and the database images. The local-pyramid approach with a 3-level pyramid and a dictionary size of 100 achieves an average precision of 86.5% in retrieving images from the benchmark database, COREL 1K, and 77.35% for that with random image database.","PeriodicalId":405588,"journal":{"name":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on the local-pyramid approach for Content-Based Image Retrieval\",\"authors\":\"Lin Feng, Anand Bilas Ray\",\"doi\":\"10.1109/IVMSPW.2011.5970363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local-pyramid approach for image representation and feature extraction is studied for the Content-Based Image Retrieval (CBIR). Lazebnik's pyramid matching kernels and the K-means clustering is used. The SIFT descriptor is deployed for feature extraction from the images, resulting in an efficient image representation scheme and reduction of the computational complexity. Histogram intersection is used to compute the similarity between the query image and the database images. The local-pyramid approach with a 3-level pyramid and a dictionary size of 100 achieves an average precision of 86.5% in retrieving images from the benchmark database, COREL 1K, and 77.35% for that with random image database.\",\"PeriodicalId\":405588,\"journal\":{\"name\":\"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2011.5970363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2011.5970363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于内容的图像检索(CBIR)中图像表示和特征提取的局部金字塔方法。使用Lazebnik的金字塔匹配核和K-means聚类。利用SIFT描述符对图像进行特征提取,得到了一种高效的图像表示方案,降低了计算复杂度。直方图交集用于计算查询图像与数据库图像之间的相似度。采用3层金字塔和100个字典大小的局部金字塔方法,从基准数据库COREL 1K检索图像的平均精度为86.5%,随机图像数据库检索图像的平均精度为77.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study on the local-pyramid approach for Content-Based Image Retrieval
The local-pyramid approach for image representation and feature extraction is studied for the Content-Based Image Retrieval (CBIR). Lazebnik's pyramid matching kernels and the K-means clustering is used. The SIFT descriptor is deployed for feature extraction from the images, resulting in an efficient image representation scheme and reduction of the computational complexity. Histogram intersection is used to compute the similarity between the query image and the database images. The local-pyramid approach with a 3-level pyramid and a dictionary size of 100 achieves an average precision of 86.5% in retrieving images from the benchmark database, COREL 1K, and 77.35% for that with random image database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信