{"title":"应用时间反馈快速识别bt流量","authors":"J. But, P. Branch","doi":"10.1109/LCN.2012.6423609","DOIUrl":null,"url":null,"abstract":"BitTorrent is one of the dominant traffic generating applications in the Internet. The ability to identify BitTorrent traffic in real-time could allow network operators to manage network traffic more effectively. In this paper we demonstrate that erroneous output of a Machine Learning based classifier is randomly distributed within a flow, allowing the application of temporal feedback to improve the overall classifier performance. We propose and evaluate a number of feedback algorithms. Our results show that we are able to improve classification outcomes (Recall by 2.4% and Precision by 0.1%) whilst both improving classification timeliness from three to two minutes, and improving robustness against future changes to the BitTorrent protocol.","PeriodicalId":209071,"journal":{"name":"37th Annual IEEE Conference on Local Computer Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying temporal feedback to rapid identification of BitTorrent traffic\",\"authors\":\"J. But, P. Branch\",\"doi\":\"10.1109/LCN.2012.6423609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BitTorrent is one of the dominant traffic generating applications in the Internet. The ability to identify BitTorrent traffic in real-time could allow network operators to manage network traffic more effectively. In this paper we demonstrate that erroneous output of a Machine Learning based classifier is randomly distributed within a flow, allowing the application of temporal feedback to improve the overall classifier performance. We propose and evaluate a number of feedback algorithms. Our results show that we are able to improve classification outcomes (Recall by 2.4% and Precision by 0.1%) whilst both improving classification timeliness from three to two minutes, and improving robustness against future changes to the BitTorrent protocol.\",\"PeriodicalId\":209071,\"journal\":{\"name\":\"37th Annual IEEE Conference on Local Computer Networks\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"37th Annual IEEE Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2012.6423609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"37th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2012.6423609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying temporal feedback to rapid identification of BitTorrent traffic
BitTorrent is one of the dominant traffic generating applications in the Internet. The ability to identify BitTorrent traffic in real-time could allow network operators to manage network traffic more effectively. In this paper we demonstrate that erroneous output of a Machine Learning based classifier is randomly distributed within a flow, allowing the application of temporal feedback to improve the overall classifier performance. We propose and evaluate a number of feedback algorithms. Our results show that we are able to improve classification outcomes (Recall by 2.4% and Precision by 0.1%) whilst both improving classification timeliness from three to two minutes, and improving robustness against future changes to the BitTorrent protocol.