{"title":"定制一个开源处理器,使其适合具有共享L1内存的超低功耗集群","authors":"Michael Gautschi, D. Rossi, L. Benini","doi":"10.1145/2591513.2591569","DOIUrl":null,"url":null,"abstract":"The OpenRISC processor core, featuring a flat pipeline and a low area footprint has been integrated in a multi-core ultra-low power (ULP) cluster with a shared multi-banked memory to exploit parallelism in the near-threshold regime. The micro-architecture has been optimized to support a shared L1 memory and to achieve a high value of instructions per cycle (IPC) per core. The proposed architecture achieves IPC results in the range of 0.88 and 1 in a set of benchmark applications which is an improvement of up to 83% with respect to the original OpenRISC implementation. Implemented in 28nm FDSOI technology, the proposed design achieves 177 MOPS when supplied at 0.6V near-threshold voltage. The energy efficiency at this workload is 90.07 MOPS/mW which is an improvement of 50% with respect to what can be achieved with an OpenRISC cluster based on the original micro-architecture.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Customizing an open source processor to fit in an ultra-low power cluster with a shared L1 memory\",\"authors\":\"Michael Gautschi, D. Rossi, L. Benini\",\"doi\":\"10.1145/2591513.2591569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The OpenRISC processor core, featuring a flat pipeline and a low area footprint has been integrated in a multi-core ultra-low power (ULP) cluster with a shared multi-banked memory to exploit parallelism in the near-threshold regime. The micro-architecture has been optimized to support a shared L1 memory and to achieve a high value of instructions per cycle (IPC) per core. The proposed architecture achieves IPC results in the range of 0.88 and 1 in a set of benchmark applications which is an improvement of up to 83% with respect to the original OpenRISC implementation. Implemented in 28nm FDSOI technology, the proposed design achieves 177 MOPS when supplied at 0.6V near-threshold voltage. The energy efficiency at this workload is 90.07 MOPS/mW which is an improvement of 50% with respect to what can be achieved with an OpenRISC cluster based on the original micro-architecture.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Customizing an open source processor to fit in an ultra-low power cluster with a shared L1 memory
The OpenRISC processor core, featuring a flat pipeline and a low area footprint has been integrated in a multi-core ultra-low power (ULP) cluster with a shared multi-banked memory to exploit parallelism in the near-threshold regime. The micro-architecture has been optimized to support a shared L1 memory and to achieve a high value of instructions per cycle (IPC) per core. The proposed architecture achieves IPC results in the range of 0.88 and 1 in a set of benchmark applications which is an improvement of up to 83% with respect to the original OpenRISC implementation. Implemented in 28nm FDSOI technology, the proposed design achieves 177 MOPS when supplied at 0.6V near-threshold voltage. The energy efficiency at this workload is 90.07 MOPS/mW which is an improvement of 50% with respect to what can be achieved with an OpenRISC cluster based on the original micro-architecture.