基于高频共现的网络舆情识别方法研究

Zhigang Song, Kang Song, Nanchang Cheng, Jiao Li, Wenqian Shang, Yuanjun Zou
{"title":"基于高频共现的网络舆情识别方法研究","authors":"Zhigang Song, Kang Song, Nanchang Cheng, Jiao Li, Wenqian Shang, Yuanjun Zou","doi":"10.1109/icisfall51598.2021.9627458","DOIUrl":null,"url":null,"abstract":"This paper mainly studies the dynamic identification of hot topics and their trend prediction: the identification methods of hot topics are studied from the two dimensions of content and form; the trend prediction method is completed from the two dimensions of media attention and emotional tendency. This paper develops a hot topic recognition method based on formal feature ranking. This paper compares the advantages and disadvantages of traditional methods, and proposes a high-frequency co-occurrence clustering strategy based on minimum similarity, which effectively solves the timeliness requirements of real-time dynamic hot spot recognition. Based on the recognition of hot topics, this article will jointly complete the trend prediction of hot topics from the changes in media attention and emotional orientation. We have encapsulated the hot topic recognition method based on high-frequency co-occurrence into a module and applied it in the national language and writing public opinion monitoring system.","PeriodicalId":240142,"journal":{"name":"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Internet Public Opinion Recognition Method Based on High Frequency Co-occurrence\",\"authors\":\"Zhigang Song, Kang Song, Nanchang Cheng, Jiao Li, Wenqian Shang, Yuanjun Zou\",\"doi\":\"10.1109/icisfall51598.2021.9627458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper mainly studies the dynamic identification of hot topics and their trend prediction: the identification methods of hot topics are studied from the two dimensions of content and form; the trend prediction method is completed from the two dimensions of media attention and emotional tendency. This paper develops a hot topic recognition method based on formal feature ranking. This paper compares the advantages and disadvantages of traditional methods, and proposes a high-frequency co-occurrence clustering strategy based on minimum similarity, which effectively solves the timeliness requirements of real-time dynamic hot spot recognition. Based on the recognition of hot topics, this article will jointly complete the trend prediction of hot topics from the changes in media attention and emotional orientation. We have encapsulated the hot topic recognition method based on high-frequency co-occurrence into a module and applied it in the national language and writing public opinion monitoring system.\",\"PeriodicalId\":240142,\"journal\":{\"name\":\"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icisfall51598.2021.9627458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icisfall51598.2021.9627458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究热点话题的动态识别及其趋势预测:从内容和形式两个维度研究热点话题的识别方法;趋势预测方法从媒体关注和情绪倾向两个维度来完成。提出了一种基于形式特征排序的热点话题识别方法。本文比较了传统方法的优缺点,提出了一种基于最小相似度的高频共现聚类策略,有效解决了实时动态热点识别的时效性要求。本文将基于对热点话题的认知,从媒体关注度和情感取向的变化两方面共同完成热点话题的趋势预测。我们将基于高频共现的热点话题识别方法封装到一个模块中,并将其应用到国家语言文字舆情监测系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Internet Public Opinion Recognition Method Based on High Frequency Co-occurrence
This paper mainly studies the dynamic identification of hot topics and their trend prediction: the identification methods of hot topics are studied from the two dimensions of content and form; the trend prediction method is completed from the two dimensions of media attention and emotional tendency. This paper develops a hot topic recognition method based on formal feature ranking. This paper compares the advantages and disadvantages of traditional methods, and proposes a high-frequency co-occurrence clustering strategy based on minimum similarity, which effectively solves the timeliness requirements of real-time dynamic hot spot recognition. Based on the recognition of hot topics, this article will jointly complete the trend prediction of hot topics from the changes in media attention and emotional orientation. We have encapsulated the hot topic recognition method based on high-frequency co-occurrence into a module and applied it in the national language and writing public opinion monitoring system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信