{"title":"交换子模赋范理想和拟中心模I的杂项","authors":"D. Voiculescu","doi":"10.4171/lem/1047","DOIUrl":null,"url":null,"abstract":"We define commutants mod normed ideals associated with compact smooth manifolds with boundary. The results about the K-theory of these operator algebras include an exact sequence for the connected sum of manifolds, derived from the Mayer-Vietoris sequence. We also make a few remarks about bicommutants mod normed ideals and about the quasicentral modulus for the quasinormed p-Schatten-von Neumann classes 0 < p < 1.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Miscellaneous on commutants mod normed ideals and quasicentral modulus $I$\",\"authors\":\"D. Voiculescu\",\"doi\":\"10.4171/lem/1047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define commutants mod normed ideals associated with compact smooth manifolds with boundary. The results about the K-theory of these operator algebras include an exact sequence for the connected sum of manifolds, derived from the Mayer-Vietoris sequence. We also make a few remarks about bicommutants mod normed ideals and about the quasicentral modulus for the quasinormed p-Schatten-von Neumann classes 0 < p < 1.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
定义了具有边界的紧光滑流形的交换子模赋范理想。关于这些算子代数的k理论的结果包括一个由Mayer-Vietoris序列导出的流形连通和的精确序列。我们还讨论了准通知p- schattenn -von Neumann类0 < p < 1的双突变模赋范理想和拟中心模。
Miscellaneous on commutants mod normed ideals and quasicentral modulus $I$
We define commutants mod normed ideals associated with compact smooth manifolds with boundary. The results about the K-theory of these operator algebras include an exact sequence for the connected sum of manifolds, derived from the Mayer-Vietoris sequence. We also make a few remarks about bicommutants mod normed ideals and about the quasicentral modulus for the quasinormed p-Schatten-von Neumann classes 0 < p < 1.