关于疼痛级系统的若干hamilton结构,第三章

Atushi Matumiya
{"title":"关于疼痛级系统的若干hamilton结构,第三章","authors":"Atushi Matumiya","doi":"10.2969/JMSJ/05140843","DOIUrl":null,"url":null,"abstract":"This is the second part of the series of our papers. In the preceding paper([11]), we studied a Hamiltonian structure of the sixth Painlevé system (H V I) equivalent to the sixth Painlevé equation P V I. In this paper, we continue the study for Painlevé systems (H J) or Painlevé equations P J for are the equations given by P V : d 2 x dt 2 = 1 2x + 1 x − 1 dx dt 2 − 1 t dx dt + (x − 1) 2 t 2 αx + β x +γ x t + δ x(x + 1) x − 1 , P IV : d 2 x dt 2 = 1 2x dx dt 2 + 3 2 x 3 + 4tx 2 + 2(t 2 − α)x + β x P III : d 2 x dt 2 = 1 x dx dt 2 − 1 t dx dt + 1 t (αx 2 + β) + γx 3 + δ x , P II : d 2 x dt 2 =2x 3 + tx + α, where x and t are complex variables, α, β, γ, and δ are complex constants([4]). It is known that each P J is equivalent to a Hamiltonian system (H J) : dx/dt = ∂H J /∂y, dy/dt = −∂H J /dx, where H V (x, y, t) = 1 t [x(x − 1) 2 y 2 − {κ 0 (x − 1) 2 + κ t x(x − 1) − ηtx}y + κ(x − 1)] (κ := 1 4 {(κ 0 + κ t) 2 − κ 2 ∞ }), H IV (x, y, t) =2xy 2 − {x 2 + 2tx + 2κ 0 }y + κ ∞ x, H III (x, y, t) = 1 t [2x 2 y 2 − {2η ∞ tx 2 + (2κ 0 + 1)x − 2η 0 t}y + η ∞ (κ 0 + κ ∞)tx], H II (x, y, t) = 1 2 y 2 − (x 2 + t 2)y − (α + 1 2)x. Here the relations between the constants in the equations P J and those in the Hamiltonians are given by α = κ ∞ 2 /2, β = −κ 0 2 /2, γ = −η(1 + κ t), δ = −η 2 /2","PeriodicalId":343884,"journal":{"name":"Kumamoto journal of mathematics","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"On Some Hamiltonian Structures of Painleve Systems, III\",\"authors\":\"Atushi Matumiya\",\"doi\":\"10.2969/JMSJ/05140843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second part of the series of our papers. In the preceding paper([11]), we studied a Hamiltonian structure of the sixth Painlevé system (H V I) equivalent to the sixth Painlevé equation P V I. In this paper, we continue the study for Painlevé systems (H J) or Painlevé equations P J for are the equations given by P V : d 2 x dt 2 = 1 2x + 1 x − 1 dx dt 2 − 1 t dx dt + (x − 1) 2 t 2 αx + β x +γ x t + δ x(x + 1) x − 1 , P IV : d 2 x dt 2 = 1 2x dx dt 2 + 3 2 x 3 + 4tx 2 + 2(t 2 − α)x + β x P III : d 2 x dt 2 = 1 x dx dt 2 − 1 t dx dt + 1 t (αx 2 + β) + γx 3 + δ x , P II : d 2 x dt 2 =2x 3 + tx + α, where x and t are complex variables, α, β, γ, and δ are complex constants([4]). It is known that each P J is equivalent to a Hamiltonian system (H J) : dx/dt = ∂H J /∂y, dy/dt = −∂H J /dx, where H V (x, y, t) = 1 t [x(x − 1) 2 y 2 − {κ 0 (x − 1) 2 + κ t x(x − 1) − ηtx}y + κ(x − 1)] (κ := 1 4 {(κ 0 + κ t) 2 − κ 2 ∞ }), H IV (x, y, t) =2xy 2 − {x 2 + 2tx + 2κ 0 }y + κ ∞ x, H III (x, y, t) = 1 t [2x 2 y 2 − {2η ∞ tx 2 + (2κ 0 + 1)x − 2η 0 t}y + η ∞ (κ 0 + κ ∞)tx], H II (x, y, t) = 1 2 y 2 − (x 2 + t 2)y − (α + 1 2)x. Here the relations between the constants in the equations P J and those in the Hamiltonians are given by α = κ ∞ 2 /2, β = −κ 0 2 /2, γ = −η(1 + κ t), δ = −η 2 /2\",\"PeriodicalId\":343884,\"journal\":{\"name\":\"Kumamoto journal of mathematics\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kumamoto journal of mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/05140843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kumamoto journal of mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/JMSJ/05140843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

这是我们系列论文的第二部分。在前面的文章([11]),我们学习第六Painleve系统的哈密顿结构(H V I)第六Painleve方程等效P V。在本文中,我们继续研究Painleve系统(H J)或Painleve方程是P J方程由P V: d 2 x dt 2 = 1 2 x + 1−1 dx dt 2−1 t dx dt + x (x−1)2 t 2α+βx t + x +γδx (x + 1) x−1,P IV: d 2 x dt 2 = 1 2 x dx dt 2 + 3 2 x 3 + 4 tx 2 + 2 (t 2−α)x +βx P III:d 2x dt 2 = 1 x dx dt 2 - 1 t dx dt + 1 t (α x2 + β) + γ x3 + δ x, P II: d 2x dt 2 =2x 3 + tx + α,其中x和t是复变量,α, β, γ和δ是复常数([4])。众所周知,每个P J等效哈密顿系统(H J): dx / dt =∂H J /∂y, dy / dt =−∂H J / dx,在H V (x, y, t) = 1 t [x (x−1)2 y 2−{κ0 (x−1)2 +κt x (x−1)−ηtx} y +κ(x−1)](κ:= 1 4{(κ0 +κt) 2−κ2∞}),H IV (x, y, t) = 2 xy 2−{x 2 + 2 tx + 2κ0}y +κ∞x,第三H (x, y, t) = 1 t [2 x 2 y 2−{2η∞tx 2 +(2κ0 + 1)x−2η0 t} y +η∞(κ0 +κ∞)tx), H II (x, y, t) = 1 2 y 2−(x 2 + t 2) y−(α+ 1 2)x。方程P J常数与哈密顿常数之间的关系为:α = κ∞2 /2,β = - κ 0 2 /2, γ = - η(1 + κ t), δ = - η 2 /2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Hamiltonian Structures of Painleve Systems, III
This is the second part of the series of our papers. In the preceding paper([11]), we studied a Hamiltonian structure of the sixth Painlevé system (H V I) equivalent to the sixth Painlevé equation P V I. In this paper, we continue the study for Painlevé systems (H J) or Painlevé equations P J for are the equations given by P V : d 2 x dt 2 = 1 2x + 1 x − 1 dx dt 2 − 1 t dx dt + (x − 1) 2 t 2 αx + β x +γ x t + δ x(x + 1) x − 1 , P IV : d 2 x dt 2 = 1 2x dx dt 2 + 3 2 x 3 + 4tx 2 + 2(t 2 − α)x + β x P III : d 2 x dt 2 = 1 x dx dt 2 − 1 t dx dt + 1 t (αx 2 + β) + γx 3 + δ x , P II : d 2 x dt 2 =2x 3 + tx + α, where x and t are complex variables, α, β, γ, and δ are complex constants([4]). It is known that each P J is equivalent to a Hamiltonian system (H J) : dx/dt = ∂H J /∂y, dy/dt = −∂H J /dx, where H V (x, y, t) = 1 t [x(x − 1) 2 y 2 − {κ 0 (x − 1) 2 + κ t x(x − 1) − ηtx}y + κ(x − 1)] (κ := 1 4 {(κ 0 + κ t) 2 − κ 2 ∞ }), H IV (x, y, t) =2xy 2 − {x 2 + 2tx + 2κ 0 }y + κ ∞ x, H III (x, y, t) = 1 t [2x 2 y 2 − {2η ∞ tx 2 + (2κ 0 + 1)x − 2η 0 t}y + η ∞ (κ 0 + κ ∞)tx], H II (x, y, t) = 1 2 y 2 − (x 2 + t 2)y − (α + 1 2)x. Here the relations between the constants in the equations P J and those in the Hamiltonians are given by α = κ ∞ 2 /2, β = −κ 0 2 /2, γ = −η(1 + κ t), δ = −η 2 /2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信