使用TensorFlow的智能移动用户界面的机器学习

Sven Mayer, Huy Viet Le, N. Henze
{"title":"使用TensorFlow的智能移动用户界面的机器学习","authors":"Sven Mayer, Huy Viet Le, N. Henze","doi":"10.1145/3098279.3119915","DOIUrl":null,"url":null,"abstract":"One key feature of TensorFlow includes the possibility to compile the trained model to run efficiently on mobile phones. This enables a wide range of opportunities for researchers and developers. In this tutorial, we teach attendees two basic steps to run neural networks on a mobile phone: Firstly, we will teach how to develop neural network architectures and train them in TensorFlow. Secondly, we show the process to run the trained models on a mobile phone.","PeriodicalId":120153,"journal":{"name":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine learning for intelligent mobile user interfaces using TensorFlow\",\"authors\":\"Sven Mayer, Huy Viet Le, N. Henze\",\"doi\":\"10.1145/3098279.3119915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One key feature of TensorFlow includes the possibility to compile the trained model to run efficiently on mobile phones. This enables a wide range of opportunities for researchers and developers. In this tutorial, we teach attendees two basic steps to run neural networks on a mobile phone: Firstly, we will teach how to develop neural network architectures and train them in TensorFlow. Secondly, we show the process to run the trained models on a mobile phone.\",\"PeriodicalId\":120153,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3098279.3119915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3098279.3119915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

TensorFlow的一个关键特性包括编译训练过的模型以便在手机上高效运行的可能性。这为研究人员和开发人员提供了广泛的机会。在本教程中,我们教与会者在手机上运行神经网络的两个基本步骤:首先,我们将教如何开发神经网络架构并在TensorFlow中训练它们。其次,我们展示了在手机上运行训练模型的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for intelligent mobile user interfaces using TensorFlow
One key feature of TensorFlow includes the possibility to compile the trained model to run efficiently on mobile phones. This enables a wide range of opportunities for researchers and developers. In this tutorial, we teach attendees two basic steps to run neural networks on a mobile phone: Firstly, we will teach how to develop neural network architectures and train them in TensorFlow. Secondly, we show the process to run the trained models on a mobile phone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信