Niharika Deshpande, Hyoshin Park, Venktesh Pandey, Gyugeun Yoon
{"title":"用物理信息正则化推进时间多模态学习","authors":"Niharika Deshpande, Hyoshin Park, Venktesh Pandey, Gyugeun Yoon","doi":"10.1109/CISS56502.2023.10089632","DOIUrl":null,"url":null,"abstract":"Estimating multimodal distributions of travel times from real-world data is critical for understanding and managing congestion. Mixture models can estimate the overall distribution when distinct peaks exist in the probability density function, but no transfer of mixture information under epistemic uncertainty across different spatiotemporal scales has been considered for capturing unobserved heterogeneity. In this paper, a physics-informed and -regularized prediction model is developed that shares observations across similarly distributed network segments across time and space. By grouping similar mixture models, the model uses a particular sample distribution at distant non-contiguous unexplored locations and improves TT prediction. Compared to traditional prediction without those updates, the proposed model's 19% of performance show the benefit of indirect learning. Different from traditional travel time prediction tools, the developed model can be used by traffic and planning agencies in knowing how far back in history and what sample size of historic data would be useful for current prediction.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"09 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Temporal Multimodal Learning with Physics Informed Regularization\",\"authors\":\"Niharika Deshpande, Hyoshin Park, Venktesh Pandey, Gyugeun Yoon\",\"doi\":\"10.1109/CISS56502.2023.10089632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating multimodal distributions of travel times from real-world data is critical for understanding and managing congestion. Mixture models can estimate the overall distribution when distinct peaks exist in the probability density function, but no transfer of mixture information under epistemic uncertainty across different spatiotemporal scales has been considered for capturing unobserved heterogeneity. In this paper, a physics-informed and -regularized prediction model is developed that shares observations across similarly distributed network segments across time and space. By grouping similar mixture models, the model uses a particular sample distribution at distant non-contiguous unexplored locations and improves TT prediction. Compared to traditional prediction without those updates, the proposed model's 19% of performance show the benefit of indirect learning. Different from traditional travel time prediction tools, the developed model can be used by traffic and planning agencies in knowing how far back in history and what sample size of historic data would be useful for current prediction.\",\"PeriodicalId\":243775,\"journal\":{\"name\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"09 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS56502.2023.10089632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing Temporal Multimodal Learning with Physics Informed Regularization
Estimating multimodal distributions of travel times from real-world data is critical for understanding and managing congestion. Mixture models can estimate the overall distribution when distinct peaks exist in the probability density function, but no transfer of mixture information under epistemic uncertainty across different spatiotemporal scales has been considered for capturing unobserved heterogeneity. In this paper, a physics-informed and -regularized prediction model is developed that shares observations across similarly distributed network segments across time and space. By grouping similar mixture models, the model uses a particular sample distribution at distant non-contiguous unexplored locations and improves TT prediction. Compared to traditional prediction without those updates, the proposed model's 19% of performance show the benefit of indirect learning. Different from traditional travel time prediction tools, the developed model can be used by traffic and planning agencies in knowing how far back in history and what sample size of historic data would be useful for current prediction.