RecDB:面向在线推荐系统的DBMS支持

PhD '12 Pub Date : 2012-05-20 DOI:10.1145/2213598.2213608
Mohamed Sarwat
{"title":"RecDB:面向在线推荐系统的DBMS支持","authors":"Mohamed Sarwat","doi":"10.1145/2213598.2213608","DOIUrl":null,"url":null,"abstract":"Recommender systems have become popular in both commercial and academic settings. The main purpose of recommender systems is to suggest to users useful and interesting items or content (data) from a considerably large set of items. Traditional recommender systems do not take into account system issues (i.e., scalability and query efficiency). In an age of staggering web use growth and everpopular social media applications (e.g., Facebook, Google Reader), users are expressing their opinions over a diverse set of data (e.g., news stories, Facebook posts, retail purchases) faster than ever. In this paper, we propose RecDB; a fully fledged database system that provides online recommendation to users. We implement RecDB using existing open source database system Apache Derby, and we use showcase the effectiveness of RecDB by adopting inside Sindbad; a Location-Based Social Networking system developed at University of Minnesota.","PeriodicalId":335125,"journal":{"name":"PhD '12","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RecDB: towards DBMS support for online recommender systems\",\"authors\":\"Mohamed Sarwat\",\"doi\":\"10.1145/2213598.2213608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems have become popular in both commercial and academic settings. The main purpose of recommender systems is to suggest to users useful and interesting items or content (data) from a considerably large set of items. Traditional recommender systems do not take into account system issues (i.e., scalability and query efficiency). In an age of staggering web use growth and everpopular social media applications (e.g., Facebook, Google Reader), users are expressing their opinions over a diverse set of data (e.g., news stories, Facebook posts, retail purchases) faster than ever. In this paper, we propose RecDB; a fully fledged database system that provides online recommendation to users. We implement RecDB using existing open source database system Apache Derby, and we use showcase the effectiveness of RecDB by adopting inside Sindbad; a Location-Based Social Networking system developed at University of Minnesota.\",\"PeriodicalId\":335125,\"journal\":{\"name\":\"PhD '12\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhD '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213598.2213608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhD '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213598.2213608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

推荐系统在商业和学术环境中都很流行。推荐系统的主要目的是从相当大的一组项目中向用户推荐有用和有趣的项目或内容(数据)。传统的推荐系统没有考虑到系统问题(即可扩展性和查询效率)。在一个网络使用增长惊人、社交媒体应用(如Facebook、Google Reader)日益流行的时代,用户通过各种各样的数据(如新闻故事、Facebook帖子、零售购买)比以往任何时候都更快地表达自己的观点。本文提出了RecDB;一个成熟的数据库系统,为用户提供在线推荐。我们使用现有的开源数据库系统Apache Derby来实现RecDB,并通过在Sindbad内部采用RecDB来展示其有效性;一个由明尼苏达大学开发的基于位置的社交网络系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RecDB: towards DBMS support for online recommender systems
Recommender systems have become popular in both commercial and academic settings. The main purpose of recommender systems is to suggest to users useful and interesting items or content (data) from a considerably large set of items. Traditional recommender systems do not take into account system issues (i.e., scalability and query efficiency). In an age of staggering web use growth and everpopular social media applications (e.g., Facebook, Google Reader), users are expressing their opinions over a diverse set of data (e.g., news stories, Facebook posts, retail purchases) faster than ever. In this paper, we propose RecDB; a fully fledged database system that provides online recommendation to users. We implement RecDB using existing open source database system Apache Derby, and we use showcase the effectiveness of RecDB by adopting inside Sindbad; a Location-Based Social Networking system developed at University of Minnesota.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信