{"title":"在基于体素的实体建模中利用几何中的自相似性","authors":"E. Parker, T. Udeshi","doi":"10.1145/781606.781631","DOIUrl":null,"url":null,"abstract":"Voxel-based modeling techniques are known for their robustness and flexibility. However, they have three major shortcomings: (1) Memory intensive, since a large number of voxels are needed to represent high-resolution models (2) Computationally expensive, since a large number of voxels need to be visited (3) Computationally expensive isosurface extraction is needed to visualize the results. We describe techniques which alleviate these by taking advantage of self-similarity in the data making voxel-techniques practical and attractive. We describe algorithms for MEMS process emulation, isosurface extraction and visualization which utilize these techniques.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Exploiting self-similarity in geometry for voxel based solid modeling\",\"authors\":\"E. Parker, T. Udeshi\",\"doi\":\"10.1145/781606.781631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voxel-based modeling techniques are known for their robustness and flexibility. However, they have three major shortcomings: (1) Memory intensive, since a large number of voxels are needed to represent high-resolution models (2) Computationally expensive, since a large number of voxels need to be visited (3) Computationally expensive isosurface extraction is needed to visualize the results. We describe techniques which alleviate these by taking advantage of self-similarity in the data making voxel-techniques practical and attractive. We describe algorithms for MEMS process emulation, isosurface extraction and visualization which utilize these techniques.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/781606.781631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/781606.781631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting self-similarity in geometry for voxel based solid modeling
Voxel-based modeling techniques are known for their robustness and flexibility. However, they have three major shortcomings: (1) Memory intensive, since a large number of voxels are needed to represent high-resolution models (2) Computationally expensive, since a large number of voxels need to be visited (3) Computationally expensive isosurface extraction is needed to visualize the results. We describe techniques which alleviate these by taking advantage of self-similarity in the data making voxel-techniques practical and attractive. We describe algorithms for MEMS process emulation, isosurface extraction and visualization which utilize these techniques.