无线传感器网络的异步分布式聚类算法

Cheng Qiao, Kenneth N. Brown
{"title":"无线传感器网络的异步分布式聚类算法","authors":"Cheng Qiao, Kenneth N. Brown","doi":"10.1145/3340997.3341007","DOIUrl":null,"url":null,"abstract":"In distributed clustering problems, nodes in a wireless sensor network must learn clusters from the data sensed across the network, without centralising the raw data. This paper presents an asynchronous distributed clustering algorithm for sensors to learn the global clusters, while respecting data privacy, and balancing communication cost and clustering quality. Different clustering algorithms including k-means and Gaussian Mixture Models, and different methods of summarising clusters to exchange between nodes are considered. In experiments on randomly generated network topologies, we demonstrate that methods which do more extensive clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve more consistent clustering, in significantly shorter elapsed time.","PeriodicalId":409906,"journal":{"name":"Proceedings of the 2019 4th International Conference on Machine Learning Technologies","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Asynchronous Distributed Clustering Algorithm for Wireless Sensor Networks\",\"authors\":\"Cheng Qiao, Kenneth N. Brown\",\"doi\":\"10.1145/3340997.3341007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In distributed clustering problems, nodes in a wireless sensor network must learn clusters from the data sensed across the network, without centralising the raw data. This paper presents an asynchronous distributed clustering algorithm for sensors to learn the global clusters, while respecting data privacy, and balancing communication cost and clustering quality. Different clustering algorithms including k-means and Gaussian Mixture Models, and different methods of summarising clusters to exchange between nodes are considered. In experiments on randomly generated network topologies, we demonstrate that methods which do more extensive clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve more consistent clustering, in significantly shorter elapsed time.\",\"PeriodicalId\":409906,\"journal\":{\"name\":\"Proceedings of the 2019 4th International Conference on Machine Learning Technologies\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 4th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340997.3341007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 4th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340997.3341007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在分布式聚类问题中,无线传感器网络中的节点必须从整个网络中感知到的数据中学习聚类,而不是集中原始数据。本文提出了一种异步分布式聚类算法,用于传感器学习全局聚类,同时尊重数据隐私,平衡通信成本和聚类质量。考虑了不同的聚类算法,包括k-means和高斯混合模型,以及不同的聚类汇总方法在节点之间交换。在随机生成的网络拓扑的实验中,我们证明了在每个周期中进行更广泛聚类的方法,以及交换聚类形状和密度的描述,而不仅仅是质心和数据计数,可以在更短的运行时间内实现更一致的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous Distributed Clustering Algorithm for Wireless Sensor Networks
In distributed clustering problems, nodes in a wireless sensor network must learn clusters from the data sensed across the network, without centralising the raw data. This paper presents an asynchronous distributed clustering algorithm for sensors to learn the global clusters, while respecting data privacy, and balancing communication cost and clustering quality. Different clustering algorithms including k-means and Gaussian Mixture Models, and different methods of summarising clusters to exchange between nodes are considered. In experiments on randomly generated network topologies, we demonstrate that methods which do more extensive clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve more consistent clustering, in significantly shorter elapsed time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信