{"title":"FET缩放还剩多少时间?","authors":"D. Mamaluy, X. Gao, B. Tierney","doi":"10.1109/IWCE.2014.6865875","DOIUrl":null,"url":null,"abstract":"The ultimate end of CMOS scaling was predicted almost immediately after the now ubiquitous technology was invented by Frank Wanlass in 1963 [1]. Indeed, many possible limitations to downscaling were discussed in the 1970s, 80s, and 90s [2]. In 2003, Zhirnov et al. [3] estimated the minimal feature size of a “binary logic switch” to be around 1.5nm, based on the Heisenberg uncertainty and Landauer principles. Since then, there have been many papers [2,4,5] discussing the likely end of CMOS scaling due to lithographical, power-thermal, material, and other technological, as opposed to fundamental physical, limitations. In this work, we compute the device switching energy, CgVg2, for several representative FinFET/MuGFET devices, and explore the role of this quantity as a fundamental physical scaling limitation, which we predict will occur around 2030. In doing so, ITRS downscaling projection data [6] is utilized for reference. MuGFET switching energies are plotted as the blue curve in Fig. 1, in units of 100kBT (T=300K), as FET gate lengths are scaled to 6-nm and below. The inset of Fig. 1 represents our extrapolation of ITRS data. This new way of plotting switching energy reveals that as gate lengths arescaled below about 5nm, the switching energy approaches that of thermal fluctuations.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How much time does FET scaling have left?\",\"authors\":\"D. Mamaluy, X. Gao, B. Tierney\",\"doi\":\"10.1109/IWCE.2014.6865875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultimate end of CMOS scaling was predicted almost immediately after the now ubiquitous technology was invented by Frank Wanlass in 1963 [1]. Indeed, many possible limitations to downscaling were discussed in the 1970s, 80s, and 90s [2]. In 2003, Zhirnov et al. [3] estimated the minimal feature size of a “binary logic switch” to be around 1.5nm, based on the Heisenberg uncertainty and Landauer principles. Since then, there have been many papers [2,4,5] discussing the likely end of CMOS scaling due to lithographical, power-thermal, material, and other technological, as opposed to fundamental physical, limitations. In this work, we compute the device switching energy, CgVg2, for several representative FinFET/MuGFET devices, and explore the role of this quantity as a fundamental physical scaling limitation, which we predict will occur around 2030. In doing so, ITRS downscaling projection data [6] is utilized for reference. MuGFET switching energies are plotted as the blue curve in Fig. 1, in units of 100kBT (T=300K), as FET gate lengths are scaled to 6-nm and below. The inset of Fig. 1 represents our extrapolation of ITRS data. This new way of plotting switching energy reveals that as gate lengths arescaled below about 5nm, the switching energy approaches that of thermal fluctuations.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ultimate end of CMOS scaling was predicted almost immediately after the now ubiquitous technology was invented by Frank Wanlass in 1963 [1]. Indeed, many possible limitations to downscaling were discussed in the 1970s, 80s, and 90s [2]. In 2003, Zhirnov et al. [3] estimated the minimal feature size of a “binary logic switch” to be around 1.5nm, based on the Heisenberg uncertainty and Landauer principles. Since then, there have been many papers [2,4,5] discussing the likely end of CMOS scaling due to lithographical, power-thermal, material, and other technological, as opposed to fundamental physical, limitations. In this work, we compute the device switching energy, CgVg2, for several representative FinFET/MuGFET devices, and explore the role of this quantity as a fundamental physical scaling limitation, which we predict will occur around 2030. In doing so, ITRS downscaling projection data [6] is utilized for reference. MuGFET switching energies are plotted as the blue curve in Fig. 1, in units of 100kBT (T=300K), as FET gate lengths are scaled to 6-nm and below. The inset of Fig. 1 represents our extrapolation of ITRS data. This new way of plotting switching energy reveals that as gate lengths arescaled below about 5nm, the switching energy approaches that of thermal fluctuations.