《绿野仙踪》中使用POMDP对听力导向对话控制的评价

Toyomi Meguro, Yasuhiro Minami, Ryuichiro Higashinaka, Kohji Dohsaka
{"title":"《绿野仙踪》中使用POMDP对听力导向对话控制的评价","authors":"Toyomi Meguro, Yasuhiro Minami, Ryuichiro Higashinaka, Kohji Dohsaka","doi":"10.1109/ASRU.2011.6163951","DOIUrl":null,"url":null,"abstract":"We have been working on dialogue control for listening agents. In our previous study [1], we proposed a dialogue control method that maximizes user satisfaction using partially observable Markov decision processes (POMDPs) and evaluated it by a dialogue simulation. We found that it significantly outperforms other stochastic dialogue control methods. However, this result does not necessarily mean that our method works as well in real dialogues with human users. Therefore, in this paper, we evaluate our dialogue control method by a Wizard of Oz (WoZ) experiment. The experimental results show that our POMDP-based method achieves significantly higher user satisfaction than other stochastic models, confirming the validity of our approach. This paper is the first to show the usefulness of POMDP-based dialogue control using human users when the target function is to maximize user satisfaction.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Wizard of Oz evaluation of listening-oriented dialogue control using POMDP\",\"authors\":\"Toyomi Meguro, Yasuhiro Minami, Ryuichiro Higashinaka, Kohji Dohsaka\",\"doi\":\"10.1109/ASRU.2011.6163951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have been working on dialogue control for listening agents. In our previous study [1], we proposed a dialogue control method that maximizes user satisfaction using partially observable Markov decision processes (POMDPs) and evaluated it by a dialogue simulation. We found that it significantly outperforms other stochastic dialogue control methods. However, this result does not necessarily mean that our method works as well in real dialogues with human users. Therefore, in this paper, we evaluate our dialogue control method by a Wizard of Oz (WoZ) experiment. The experimental results show that our POMDP-based method achieves significantly higher user satisfaction than other stochastic models, confirming the validity of our approach. This paper is the first to show the usefulness of POMDP-based dialogue control using human users when the target function is to maximize user satisfaction.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们一直在研究监听代理的对话控制。在我们之前的研究[1]中,我们提出了一种使用部分可观察马尔可夫决策过程(pomdp)最大化用户满意度的对话控制方法,并通过对话模拟对其进行了评估。我们发现它明显优于其他随机对话控制方法。然而,这个结果并不一定意味着我们的方法在与人类用户的真实对话中也同样有效。因此,在本文中,我们通过绿野仙踪(WoZ)实验来评估我们的对话控制方法。实验结果表明,基于pomdp的方法获得的用户满意度明显高于其他随机模型,验证了该方法的有效性。本文首次展示了当目标功能是最大化用户满意度时,基于pomdp的对话控制使用人类用户的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wizard of Oz evaluation of listening-oriented dialogue control using POMDP
We have been working on dialogue control for listening agents. In our previous study [1], we proposed a dialogue control method that maximizes user satisfaction using partially observable Markov decision processes (POMDPs) and evaluated it by a dialogue simulation. We found that it significantly outperforms other stochastic dialogue control methods. However, this result does not necessarily mean that our method works as well in real dialogues with human users. Therefore, in this paper, we evaluate our dialogue control method by a Wizard of Oz (WoZ) experiment. The experimental results show that our POMDP-based method achieves significantly higher user satisfaction than other stochastic models, confirming the validity of our approach. This paper is the first to show the usefulness of POMDP-based dialogue control using human users when the target function is to maximize user satisfaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信