光学遥感卫星图像的多时相云像元重建方法

Huiqian Liu, Ruofei Zhong, Haiyin Wang, Shiyong Wu, Qingyang Li, Cankun Yang
{"title":"光学遥感卫星图像的多时相云像元重建方法","authors":"Huiqian Liu, Ruofei Zhong, Haiyin Wang, Shiyong Wu, Qingyang Li, Cankun Yang","doi":"10.2174/2210298102666220616114622","DOIUrl":null,"url":null,"abstract":"\n\nThe existence of cloud pixels reduces the practicability of optical satellite remote sensing data.\n\n\n\nExisting cloud reconstruction methods generally cannot solve the following problems:(1)Large-scale thick cloud cannot be well reconstructed. (2)There are high requirements for reconstructed data. (3)Most data used to reconstructed are single temporal images.\n\n\n\nIn order to overcome these problems, a new multi temporal weighted aggregation method is proposed. Specifically, we adopt a multi-temporal iterative aggregation method for cloud pixels to reconstruct and a multi-temporal weighted aggregation method for cloud shadow pixels to reconstruct.\n\n\n\nFinally, the experiment proves that our method can quickly and accurately complete the cloud reconstruction, and under the effective uniform color strategy, a cloud- free image with accurate geometric position and uniform gray scale can be obtained.\n\n\n\nExperiments prove that the pixel reconstruction method proposed in this paper has achieved good cloud and cloud shadow pixel reconstruction effects in different types of ground objects.\n","PeriodicalId":184819,"journal":{"name":"Current Chinese Science","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-temporal cloud pixels reconstruction method for optical remote sensing satellite images\",\"authors\":\"Huiqian Liu, Ruofei Zhong, Haiyin Wang, Shiyong Wu, Qingyang Li, Cankun Yang\",\"doi\":\"10.2174/2210298102666220616114622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe existence of cloud pixels reduces the practicability of optical satellite remote sensing data.\\n\\n\\n\\nExisting cloud reconstruction methods generally cannot solve the following problems:(1)Large-scale thick cloud cannot be well reconstructed. (2)There are high requirements for reconstructed data. (3)Most data used to reconstructed are single temporal images.\\n\\n\\n\\nIn order to overcome these problems, a new multi temporal weighted aggregation method is proposed. Specifically, we adopt a multi-temporal iterative aggregation method for cloud pixels to reconstruct and a multi-temporal weighted aggregation method for cloud shadow pixels to reconstruct.\\n\\n\\n\\nFinally, the experiment proves that our method can quickly and accurately complete the cloud reconstruction, and under the effective uniform color strategy, a cloud- free image with accurate geometric position and uniform gray scale can be obtained.\\n\\n\\n\\nExperiments prove that the pixel reconstruction method proposed in this paper has achieved good cloud and cloud shadow pixel reconstruction effects in different types of ground objects.\\n\",\"PeriodicalId\":184819,\"journal\":{\"name\":\"Current Chinese Science\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chinese Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210298102666220616114622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chinese Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210298102666220616114622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云像元的存在降低了光学卫星遥感数据的实用性。现有的云重建方法一般不能解决以下问题:(1)不能很好地重建大尺度厚云。(2)重构数据要求高。(3)重构数据多为单幅时间图像。为了克服这些问题,提出了一种新的多时相加权聚合方法。具体来说,我们采用了云像元的多时相迭代聚集法和云阴影像元的多时相加权聚集法进行重建。最后,实验证明了我们的方法可以快速、准确地完成云重建,并在有效的制服颜色策略下,云-免费的图像可以获得精确的几何位置和灰度均匀。实验证明,本文提出的像元重建方法在不同类型的地物中取得了较好的云和云影像元重建效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-temporal cloud pixels reconstruction method for optical remote sensing satellite images
The existence of cloud pixels reduces the practicability of optical satellite remote sensing data. Existing cloud reconstruction methods generally cannot solve the following problems:(1)Large-scale thick cloud cannot be well reconstructed. (2)There are high requirements for reconstructed data. (3)Most data used to reconstructed are single temporal images. In order to overcome these problems, a new multi temporal weighted aggregation method is proposed. Specifically, we adopt a multi-temporal iterative aggregation method for cloud pixels to reconstruct and a multi-temporal weighted aggregation method for cloud shadow pixels to reconstruct. Finally, the experiment proves that our method can quickly and accurately complete the cloud reconstruction, and under the effective uniform color strategy, a cloud- free image with accurate geometric position and uniform gray scale can be obtained. Experiments prove that the pixel reconstruction method proposed in this paper has achieved good cloud and cloud shadow pixel reconstruction effects in different types of ground objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信