用户级线程:鱼与熊掌兼得

M. Karsten, Saman Barghi
{"title":"用户级线程:鱼与熊掌兼得","authors":"M. Karsten, Saman Barghi","doi":"10.1145/3393691.3394226","DOIUrl":null,"url":null,"abstract":"An important class of computer software, such as network servers, exhibits concurrency through many loosely coupled and potentially long-running communication sessions. For these applications, a long-standing open question is whether thread-per-session programming can deliver comparable performance to event-driven programming. This paper clearly demonstrates, for the first time, that it is possible to employ user-level threading for building thread-per-session applications without compromising functionality, efficiency, performance, or scalability. We present the design and implementation of a general-purpose, yet nimble, user-level M:N threading runtime that is built from scratch to accomplish these objectives. Its key components are efficient and effective load balancing and user-level I/O blocking. While no other runtime exists with comparable characteristics, an important fundamental finding of this work is that building this runtime does not require particularly intricate data structures or algorithms. The runtime is thus a straightforward existence proof for user-level threading without performance compromises and can serve as a reference platform for future research. It is evaluated in comparison to event-driven software, system-level threading, and several other user-level threading runtimes. An experimental evaluation is conducted using benchmark programs, as well as the popular Memcached application. We demonstrate that our user-level runtime outperforms other threading runtimes and enables thread-per-session programming at high levels of concurrency and hardware parallelism without sacrificing performance.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"User-level Threading: Have Your Cake and Eat It Too\",\"authors\":\"M. Karsten, Saman Barghi\",\"doi\":\"10.1145/3393691.3394226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important class of computer software, such as network servers, exhibits concurrency through many loosely coupled and potentially long-running communication sessions. For these applications, a long-standing open question is whether thread-per-session programming can deliver comparable performance to event-driven programming. This paper clearly demonstrates, for the first time, that it is possible to employ user-level threading for building thread-per-session applications without compromising functionality, efficiency, performance, or scalability. We present the design and implementation of a general-purpose, yet nimble, user-level M:N threading runtime that is built from scratch to accomplish these objectives. Its key components are efficient and effective load balancing and user-level I/O blocking. While no other runtime exists with comparable characteristics, an important fundamental finding of this work is that building this runtime does not require particularly intricate data structures or algorithms. The runtime is thus a straightforward existence proof for user-level threading without performance compromises and can serve as a reference platform for future research. It is evaluated in comparison to event-driven software, system-level threading, and several other user-level threading runtimes. An experimental evaluation is conducted using benchmark programs, as well as the popular Memcached application. We demonstrate that our user-level runtime outperforms other threading runtimes and enables thread-per-session programming at high levels of concurrency and hardware parallelism without sacrificing performance.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一类重要的计算机软件,如网络服务器,通过许多松散耦合且可能长时间运行的通信会话显示并发性。对于这些应用程序,一个长期存在的问题是,每会话线程编程是否能够提供与事件驱动编程相当的性能。本文首次清晰地展示了在不影响功能、效率、性能或可伸缩性的情况下,使用用户级线程来构建每个会话一个线程的应用程序是可能的。我们提出了一个通用的、灵活的、用户级的M:N线程运行时的设计和实现,它是为了实现这些目标而从头构建的。它的关键组件是高效和有效的负载平衡和用户级I/O阻塞。虽然没有其他运行时具有类似的特性,但这项工作的一个重要的基本发现是,构建这个运行时不需要特别复杂的数据结构或算法。因此,运行时是用户级线程在不影响性能的情况下直接存在的证明,可以作为未来研究的参考平台。将其与事件驱动软件、系统级线程和其他几个用户级线程运行时进行比较。使用基准程序以及流行的Memcached应用程序进行了实验评估。我们演示了我们的用户级运行时优于其他线程运行时,并且在不牺牲性能的情况下,支持高并发性和硬件并行性的每会话线程编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User-level Threading: Have Your Cake and Eat It Too
An important class of computer software, such as network servers, exhibits concurrency through many loosely coupled and potentially long-running communication sessions. For these applications, a long-standing open question is whether thread-per-session programming can deliver comparable performance to event-driven programming. This paper clearly demonstrates, for the first time, that it is possible to employ user-level threading for building thread-per-session applications without compromising functionality, efficiency, performance, or scalability. We present the design and implementation of a general-purpose, yet nimble, user-level M:N threading runtime that is built from scratch to accomplish these objectives. Its key components are efficient and effective load balancing and user-level I/O blocking. While no other runtime exists with comparable characteristics, an important fundamental finding of this work is that building this runtime does not require particularly intricate data structures or algorithms. The runtime is thus a straightforward existence proof for user-level threading without performance compromises and can serve as a reference platform for future research. It is evaluated in comparison to event-driven software, system-level threading, and several other user-level threading runtimes. An experimental evaluation is conducted using benchmark programs, as well as the popular Memcached application. We demonstrate that our user-level runtime outperforms other threading runtimes and enables thread-per-session programming at high levels of concurrency and hardware parallelism without sacrificing performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信